一、单位元:
在自然数中,任意数加上0等于本身,0则为加法的单位元,任意数乘以1等于本身,1则为乘法单位元。
有限域中单位元用e表示,即乘法,加法的单位元都用e表示,不过这两者的e不一样。
二、逆元
在有理数中,如果两个数乘积为1,这两个数互为乘法逆元。如果两个数相加等于0,互为加法逆元,
有限域中,如果a+b=e,则a和b互为加法逆元,如果axb =e,则a和b互为乘法逆元。
三、域成立的条件
必要条件:一个集合有加法单位元,乘法单位元,以及每一个元素都对应有加法逆元,和乘法逆元,(有限域并不要求0有乘法逆元)
四、有限多项式GF(2^n)的运算规则:
1、多项式系数只能是0或者1。
2、多项式在进行同类项合并时,系数加减需要按照模p操作,
3、对于GF(2)域,加法等效于异或操作。且减法,或者负系数等于直接取反,即x-x与x+x等效。而-x与x等效。
五、素多项式概念意义
1、概念:
在有限域内,不能被再次分解的多项式,即不能被表示为其他任意两个多项式的乘积。只能被1和自身整除。 类似于素数的概念
2、意义:
素多项式的存在,可以将有限域内的任意多项式进行一一对应和一一映射。
不同的素多项式有不同的映射规则。
能够有效的降幂
六、在有限域内,本原多项式与任意多项式相承,结果为0