1 栈的定义
  栈和队列是在软件设计中常用的两种数据结构,它们的逻辑结构和线性表相同。其特点在于运算受到了限制:栈按“后进先出”的规则进行操作,队按“先进先出”的规则进行操作,故称运算受限制的线性表。
  栈是限制在表的一端进行插入和删除的线性表。允许插入、删除的这一端称为栈顶,另一个固定端称为栈底。当表中没有元素时称为空栈。如图3.1.1 所示栈中有三个元素,进栈的顺序是a1、a2、a3,当需要出栈时其顺序为a3、a2、a1,所以栈又称为后进先出的线性表(Last In First Out),简称LIFO表。
  这里写图片描述
 
  在日常生活中,有很多后进先出的例子,读者可以列举。在程序设计中,常常需要栈这样的数据结构,使得与保存数据时相反顺序来使用这些数据,这时就需要用一个栈来实现。对于栈,常做的基本运算有:
  ⑴ 栈初始化:Init_Stack(s)
  初始条件:栈s 不存在
  操作结果:构造了一个空栈。
  ⑵ 判栈空:Empty_Stack(s)
  初始条件:栈s 已存在
  操作结果:若s 为空栈返回为1,否则返回为0。
  ⑶ 入栈: Push_Stack(s,x)
  初始条件:栈s 已存在
  操作结果:在栈s 的顶部插入一个新元素x, x 成为新的栈顶元素。栈发生变化。
  ⑷ 出栈:Pop_Stack(s)
  初始条件:栈s 存在且非空
  操作结果:栈s 的顶部元素从栈中删除,栈中少了一个元素。栈发生变化。
  ⑸ 读栈顶元素:Top_Stack(s)
  初始条件:栈s 存在且非空
  操作结果:栈顶元素作为结果返回,栈不变化。

2.栈的存储实现和运算实现
  由于栈是运算受限的线性表,因此线性表的存储结构对栈也是适用的,只是操作不同而已。
顺序栈
  利用顺序存储方式实现的栈称为顺序栈。类似于顺序表的定义,栈中的数据元素用一个预设的足够长度的一维数组来实现:datatype data[MAXSIZE],栈底位置可以设置在数组的任一个端点,而栈顶是随着插入和删除而变化的,用一个int top 来作为栈顶的指针,指明当前栈顶的位置,同样将data 和top 封装在一个结构中,顺序栈的类型描述如下:
 

 #define MAXSIZE 1024
  typedef struct
  {
  datatype data[MAXSIZE];
  int top;
  }SeqStack

定义一个指向顺序栈的指针:
  SeqStack *s;
  通常0 下标端设为栈底,这样空栈时栈顶指针top=-1; 入栈时,栈顶指针加1,即s->top++; 出栈时,栈顶指针减1,即s->top–。栈操作的示意图如图3.2 所示。
  图(a)是空栈,图(c)是A、B、C、D、E 5 个元素依次入栈之后,图(d)是在图(c)之后E、D 相继出栈,此时栈中还有3 个元素,或许最近出栈的元素D、E 仍然在原先的单元存储着,但top 指针已经指向了新的栈顶,则元素D、E 已不在栈中了,通过这个示意图要深刻理解栈顶指针的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值