[机器学习] 模型稳定度指标PSI

本文深入探讨群体稳定性指标(PSI),一种用于评估模型在不同样本或时间段稳定性的重要工具。PSI通过比较模型评分分布的变化,帮助确定模型是否需要更新。文章详细解释了PSI的计算方法及其在样本外和时间外测试的应用,并提供了变量稳定性的计算实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

群体稳定性指标(population stability index)

 

由于模型是以特定时期的样本所开发的,此模型是否适用于开发样本之外的族群,必须经过稳定性测试才能得知。稳定度指标(population stability index ,PSI)可衡量测试样本及模型开发样本评分的的分布差异,为最常见的模型稳定度评估指针。其实PSI表示的就是按分数分档后,针对不同样本,或者不同时间的样本,population分布是否有变化,就是看各个分数区间内人数占总人数的占比是否有显著变化。通常用作模型效果监测。一般认为PSI小于0.1时候模型稳定性很高,0.1-0.2一般,需要进一步研究,大于0.2模型稳定性差,建议修复。

公式如下:

这里的AC与EX为不同时间段的模型输出分数,如果PSI过大,说明模型输出的分数分布变化很大了,需要更新模型。 

 

PSI实际应用范例:

1)样本外测试

  针对不同的样本测试一下模型稳定度,比如训练集与测试集,也能看出模型的训练情况,我理解是看出模型的方差情况。

2)时间外测试

  测试基准日与建模基准日相隔越远,测试样本的风险特征和建模样本的差异可能就越大,因此PSI值通常较高。至此也可以看出模型建的时间太长了,是不是需要重新用新样本建模了。

 

变量的PSI计算:

PSI:检验变量的稳定性,当一个变量的psi值大于0.0001时,变量不稳定。一个变量,将它的取值按照分位数来分组一下,每一组中测试模型的客户数占比减去训练模型中的客户数占比再乘以这两者相除的对数,就是这一组的稳定性系数psi,然后变量的psi系数就是把这个变量的所有组的psi相加总起来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值