Logistic回归

前言

生活中有许多最优化问题,如到达两地的最短时间、发动机油耗最小产生最率最大。本章将使用最优化算法训练一个非线性函数用于分类。这里所说的非线性函数(分类器),就是logistic回归分类器。

假设有一些数据点,用一条直线对这些数据点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归。利用logistic回归来分类的主要思想为:根据现有数据对分类边界建立回归公式,通过该回归公式进行分类。

回归一词来源于最佳拟合,表示找到最佳拟合参数集。训练分类器时,采用最优化算法,寻找最佳拟合参数。

(1)收集数据:任意方法。

(2)准备数据:数值型数据,结构化数据格式。

(3)分析数据:任意方法。

(4)训练算法:找到最佳的分类回归参数。

(5)测试算法:使用测试数据,测试算法准确度。

(6)使用算法:输入数据,转化格式,使用训练好的回归参数进行回归计算,判定属于的类别。

基于logistic回归的和Sigmoid函数的分类

优点:计算代价不高。

缺点:容易欠拟合,分类精度可能不高。

Sigmod函数:

f ( x ) = 1 1 + e − x f(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1
当x值为0时,sigmod函数值为0.5.随着x值的增大,对应的sigmod值逼近1。随着x的减少,对应的sigmod值逼近0。

为了实现分类任务,在将每一个特征乘以一个回归系数,然后把所有值相加,将这个值作为sigmod函数的输入,从而得到一个范围在0~1之间的数值。如果大于0.5,属于分类1,反之属于分类0.

现在,我们要解决的任务就是:最佳回归系数?

基于最优化方法的最佳回归系数缺点

z = w 0 x 0 + w 1 x 1 + w 2 x 2 + . . . + w n x n z = w_0x_0+w_1x_1+w_2x_2+...+w_nx_n z=w0x0+w1x1+w2x2+...+wnxn
采用向量改写上述公式:

z = w T x z = w^Tx z=wTx
其中z为sigmod函数的输入,x是分类器的输入数据,w是最佳参数(系数)。为了寻找最佳参数,需要用到最优化。

梯度上升法

梯度上升法是一种最优化算法,其基本思想是:为了找到某个函数的最大值,沿着该函数的梯度方向寻找。函数f(x,y)的梯度由下式表示:

∇ f ( x , y ) = [ ϑ f ( x , y ) ϑ x ϑ f ( x , y ) ϑ y ] \nabla{f(x,y)}=[\frac{ {\frac{ \vartheta f(x,y) }{ \vartheta x }} } { {\frac{ \vartheta f(x,y) }{ \vartheta y }} }] f(x,y)=[ϑyϑf(x,y)ϑxϑf(x,y)]
这个梯度意味着,找找到函数最大的值,需要沿x的方向移动
ϑ f ( x , y ) ϑ x \frac{ \vartheta f(x,y) }{ \vartheta x } ϑxϑf(x,y)
沿y的方向移动

ϑ f ( x , y ) ϑ y \frac{ \vartheta f(x,y) }{ \vartheta y } ϑyϑf(x,y)
其中f(x,y)必须是可微。移动方向有了,需要移动多少?移动量的大小称为步长,记做
α \alpha α
梯度算法的迭代公式如下:

w : = w + α ∇ f ( w ) w:=w+\alpha{\nabla{f(w)}} w:=w+αf(w)
该过程迭代执行,直到满足某个停止条件。

梯度下降,只是把上式中的+改为-号,它寻找函数关于参数w的最小值:
w : = w − α ∇ f ( w ) w:=w-\alpha{\nabla{f(w)}} w:=wαf(w)

上面两式,梯度上升用来求函数的最大值,梯度下降用来求函数的最小值。对于梯度下降公式的理解:用来训练的数据是准备好的,不变的。但是非线性函数f的系数是可以改变的,通过改变系数w,求得函数f的最小值。

训练算法:使用梯度下降找到最佳参数

伪代码

初始化每个回归系数(1)
重复R次:
    计算整个数据集的梯度
    使用alpha(步长)x梯度更新回归稀疏
    返回回归系数

具体实现
logistic回归梯度下降算法

#加载数据
def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        #分割文本  strip去掉前后空白 split分割
        lineArr = line.strip().split()
        #[x0 x1 x2]=[1 xxx xxx] 1为x0
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        #标签        
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    #激活函数
    return 1.0/(1+exp(-inX))

#梯度下降法
def gradAscent(dataMatIn, classLabels):
    #转换为mat类型
    dataMatrix = mat(dataMatIn)             
    labelMat = mat(classLabels).transpose() 
    #m行,n列
    m,n = shape(dataMatrix)
    #步长
    alpha = 0.001
    #最大迭代次数
    maxCycles = 500
    #回归系数(列向量)
    weights = ones((n,1))
    for k in range(maxCycles):
        #计算整个数据集乘以回归系数后,经过sigmod函数计算的值(列向量)
        h = sigmoid(dataMatrix*weights)
        #计算整个数据集预测分类的误差(列向量)
        error = (h-labelMat) 
        #梯度下降w=w-步长*梯度(也就是找到h的最小值,最小值减去一个值,从而让error最小)
        weights = weights -alpha * dataMatrix.transpose()* error 
        #梯度上升(也就是找到h的最大值,减去最大的值,从而让error最小)
        #error=(labelMat-h)
        #weights = weights +alpha * dataMatrix.transpose()* error
    return weights

这里是计算真实类别和预测类别的差值,按照差值的方向调整回归系数。

画出决策边界

考虑sigmod(x),当函数sigmod的输入即(w0x0+xw1+yw2)为0时,是两个类别的决策边界。下面代码画出分割线,便于理解。

def plotBestFit(wei):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    #行数,样本数
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        #类别1
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        #类别0
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    #创建画布
    fig = plt.figure()
    ax = fig.add_subplot(111)
    #两类数据点样式
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    #sigmod(x)中的 x等于0时是两类的分界线 x0w0+xw1+yw2=0
    y = (-weights[0]-weights[1]*x)/weights[2]
    #转置
    y=y.transpose()
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()
训练方法:随机梯度下降

之前 的梯度下降方法,每次更新回归系数时需要遍历整个数据集,如果处理大量(千万、亿)条数据时,每个数据点包含上百个特征时,该方法的计算复杂度太高。一种改进方法:一次仅用一个样本点来更新回归系数,该方法称为随机梯度下降法

采用这种方法可以在新的样本点到来时对分类器进行增量式更新,因此随机梯度下降法是一个在线学习算法。与在线学习相对应的,一次处理所有数据称为批处理

随机梯度下降算法伪码

初始化回归系数
对数据集中每一个样本
    计算该样本的梯度
    alpha*gradient更新回归系数
返回回归系数

随机梯度下降法

def stocGradAscent0(dataMatrix, classLabels):
    dataMatrix=array(dataMatrix)
    #行(样本数),列(特征数)
    m,n = shape(dataMatrix)
    #步长
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    #每一个样本
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error =  h-classLabels[i]
        #梯度下降(求最小h,使得error最小)
        weights = weights - alpha * error * dataMatrix[i]
    return weights

上述代码相当于在整个数据集上运行一次,我们可以改进该算法,使得在整个数据集上迭代150次,另外固定的步长可能导致回归系数收敛时来回波动(这个问题可以理解为,回归系数因为步长过大,在收敛值左右跳动),因此需要随着训练次数的增长,适当减少步长。

改进的随机梯度下降算法

#改进的梯度下降算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    dataMatrix=array(dataMatrix)
    #行、列
    m,n = shape(dataMatrix)
    #初始化回归系数
    weights = ones(n)   #initialize to all ones
    #在整个数据集上迭代numIter次
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            #调整alpha值
            alpha = 4/(1.0+j+i)+0.0001
            #随机选取样本点
            randIndex = int(random.uniform(0,len(dataIndex)))
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error =  h-classLabels[randIndex]
            #梯度下降
            weights = weights -alpha * error * dataMatrix[randIndex]
            #删除该样本点索引
            del(dataIndex[randIndex])
    return weights

总结

Logistic回归的目标就是寻找非线性函数Sigmod的最佳拟合参数,这个求解过程可以用最优化算法完成。梯度下降(上升)法较为常用,随机梯度下降算法比梯度下降算法占用的资源更少,且是一个在线算法,可以在新数据到来时进行更新,而不需要读取整个数据集进行批处理运算。

testSet.txt(训练数据)

-0.017612	14.053064	0
-1.395634	4.662541	1
-0.752157	6.538620	0
-1.322371	7.152853	0
0.423363	11.054677	0
0.406704	7.067335	1
0.667394	12.741452	0
-2.460150	6.866805	1
0.569411	9.548755	0
-0.026632	10.427743	0
0.850433	6.920334	1
1.347183	13.175500	0
1.176813	3.167020	1
-1.781871	9.097953	0
-0.566606	5.749003	1
0.931635	1.589505	1
-0.024205	6.151823	1
-0.036453	2.690988	1
-0.196949	0.444165	1
1.014459	5.754399	1
1.985298	3.230619	1
-1.693453	-0.557540	1
-0.576525	11.778922	0
-0.346811	-1.678730	1
-2.124484	2.672471	1
1.217916	9.597015	0
-0.733928	9.098687	0
-3.642001	-1.618087	1
0.315985	3.523953	1
1.416614	9.619232	0
-0.386323	3.989286	1
0.556921	8.294984	1
1.224863	11.587360	0
-1.347803	-2.406051	1
1.196604	4.951851	1
0.275221	9.543647	0
0.470575	9.332488	0
-1.889567	9.542662	0
-1.527893	12.150579	0
-1.185247	11.309318	0
-0.445678	3.297303	1
1.042222	6.105155	1
-0.618787	10.320986	0
1.152083	0.548467	1
0.828534	2.676045	1
-1.237728	10.549033	0
-0.683565	-2.166125	1
0.229456	5.921938	1
-0.959885	11.555336	0
0.492911	10.993324	0
0.184992	8.721488	0
-0.355715	10.325976	0
-0.397822	8.058397	0
0.824839	13.730343	0
1.507278	5.027866	1
0.099671	6.835839	1
-0.344008	10.717485	0
1.785928	7.718645	1
-0.918801	11.560217	0
-0.364009	4.747300	1
-0.841722	4.119083	1
0.490426	1.960539	1
-0.007194	9.075792	0
0.356107	12.447863	0
0.342578	12.281162	0
-0.810823	-1.466018	1
2.530777	6.476801	1
1.296683	11.607559	0
0.475487	12.040035	0
-0.783277	11.009725	0
0.074798	11.023650	0
-1.337472	0.468339	1
-0.102781	13.763651	0
-0.147324	2.874846	1
0.518389	9.887035	0
1.015399	7.571882	0
-1.658086	-0.027255	1
1.319944	2.171228	1
2.056216	5.019981	1
-0.851633	4.375691	1
-1.510047	6.061992	0
-1.076637	-3.181888	1
1.821096	10.283990	0
3.010150	8.401766	1
-1.099458	1.688274	1
-0.834872	-1.733869	1
-0.846637	3.849075	1
1.400102	12.628781	0
1.752842	5.468166	1
0.078557	0.059736	1
0.089392	-0.715300	1
1.825662	12.693808	0
0.197445	9.744638	0
0.126117	0.922311	1
-0.679797	1.220530	1
0.677983	2.556666	1
0.761349	10.693862	0
-2.168791	0.143632	1
1.388610	9.341997	0
0.317029	14.739025	0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值