图像熵

Matlab实现代码如下:

(1)图像的熵 

function shang = ssshang(X)  
[m,n,t]=size(X);     I3 = double(X)+1;  %灰度从0到256
s(256) = 0;  
for i = 1:m  
    for j = 1:n  
        va = I3(i,j);  %获取灰度
        s(va) = s(va)+1;  %值为va的点的个数
    end  
end  
p = s./(m*n);  
en = 0.;  
for i = 1:256  
    if p(i)~=0  
       en = en+p(i)*log2(p(i));%概率取对数(以2为底)再乘以概率 最后连加取反  
    end  
end  
shang = -en; 
(2)局部熵  
clear all;
close all;
clc;

img=imread('lena.jpg');
[m n]=size(img);
w=3;    %模板半径 模板大小为9*9
imgn=zeros(m,n);
for i=1+w:m-w
    for j=1+w:n-w
        
        Hist=zeros(1,256);
        for p=i-w:i+w
            for q=j-w:j+w
                Hist(img(p,q)+1)=Hist(img(p,q)+1)+1;    %统计局部直方图
            end
        end
        Hist=Hist/sum(Hist);     %部分人称之为‘归一化直方图’
        for k=1:256
            if Hist(k)~=0
               imgn(i,j)=imgn(i,j)+Hist(k)*log(1/Hist(k));  %局部熵
            end
        end
    end
end
imshow(imgn,[])

%用matlab 自带函数实现
imgn1=entropyfilt(img);         %系统的局部熵函数
figure;
imshow(imgn1,[])

熵的一些知识

  熵越大,无序程度越高。

  图像处理中,根据图像的各个像素点的灰度分布的有序性,定义图像的局部熵,其反映了图像信息的丰富程度。  

  事件发生的概率越小, 其包含的信息量就越大, 其不确定性的程度就越高, 按照乘法的含义: 事件的不确定性乘以其发生的概率, 代表事物具体表现出来的不确定量。

 
                                                                         

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值