ubuntu配置MXNET环境

下面都是搬运。链接在下面。

ubuntu系统安装anaconda3或者miniconda3运行指令,提示sudo:conda: command not found解决办法

现在python3.5越来越流行,这是需要安装anaconda,有时我们仅仅需要安装简化版miniconda,但是安装后往往出现问题,如运行sudo conda *******,提示sudo:conda: command not found,这时需要去掉sudo,运行conda *******,这时出现了问题,提示PermissionError: [Errno 13] Permission denied: '/home/marley/miniconda3/pkgs/cache/db552c1e.json'

这是一个很棘手的问题,需要一定的经验解决,我尝试了很多方法,并查阅了资料,最终通过请教大神成功解决了,在这里分享一下经验:

1.首先检查一下conda安装

please run "cd ~"
then run"ls"

output:

anaconda2                        Hubstaff                           模板
anaconda3                        miniconda3                         视频
Anaconda3-4.3.1-Linux-x86_64.sh  Miniconda3-latest-Linux-x86_64.sh  图片
CarND-LaneLines-P1               pycharm-community-2017.1.1         文档
CarND-Term1-Starter-Kit          Python-3.5.0                       下载
Downloads                        Python-3.5.0.tgz                   音乐
examples.desktop                 公共的                             桌面

没问题,按下面步骤执行

2.检查miniconda

please "cd ~/miniconda3"
then 'ls'

output:bin  conda-meta  envs  etc  include  lib  LICENSE.txt  pkgs  share  ssl

没问题,往下执行

3.检查路径缺失

when you run "vi ~/.bashrc" :
it shows that your path for anaconda is missing
so you have to add it back
now please run 'nano ~/.bashrc

the bottom line "export PATH="/home/marley/miniconda3/bin:$PATH"

没问题,exit nano

4.检查conda

run 'source ~/.bashrc'

run 'conda list' to see any output

output:

# packages in environment at /home/marley/miniconda3:
#
cffi                      1.9.1                    py36_0  
conda                     4.3.11                   py36_0  
conda-env                 2.6.0                         0  
cryptography              1.7.1                    py36_0  
idna                      2.2                      py36_0  
libffi                    3.2.1                         1  
openssl                   1.0.2k                        0  
pip                       9.0.1                    py36_1  
pyasn1                    0.1.9                    py36_0  
pycosat                   0.6.1                    py36_1  
pycparser                 2.17                     py36_0  
pyopenssl                 16.2.0                   py36_0  
python                    3.6.0                         0  
readline                  6.2                           2  
requests                  2.12.4                   py36_0  
ruamel_yaml               0.11.14                  py36_1  
setuptools                27.2.0                   py36_0  
six                       1.10.0                   py36_0  
sqlite                    3.13.0                        0  
tk                        8.5.18                        0  
wheel                     0.29.0                   py36_0  
xz                        5.2.2                         1  
yaml                      0.1.6                         0  
zlib                      1.2.8                         3

没问题,但是依然不能运行sudo conda ******

5.检查conda版本

Please run 'conda --version'

output:conda 4.3.11

6.更新conda

please run 'conda update conda'

提示:PermissionError: [Errno 13] Permission denied: '/home/marley/miniconda3/pkgs/cache/db552c1e.json'

7.解决conda权限问题

try this:
sudo chown -R marley:marley /home/marley/miniconda3

then run " conda update conda"

最后提示:conda-4.3.16-p 100% |################################| Time: 0:00:00   1.78 MB/s

表示conda更新好了

8.可以使用conda

conda******


welcome

next time try to google or stackoverflow first


my process was not only based on the experience in bashrc file. But also google 'miniconda3/pkgs/cache/db552c1e.json

you can figure out which is common and which is not common in your error

https://blog.csdn.net/marleylee/article/details/70808953 


Ubuntu16.04+nvidia显卡驱动+cuda安装

机器配置:950M + inter hd

步骤:

  1. bios中务必关闭Secure Boot:
    ps:如果在bios中Secure Boot是灰色的,无法disable,请往下看:
    关于Secure Boot在bios中有一段话解释:
    Secure Boot be enabled only when: (1).Platform Key(PK) is enrolled and platform is operating in User mode; (2). CSM function is disabled in setup。
    因此,要Disable Secure Boot,首先如果PK(也就是bios中Key Managemnet有key,请全部 delete),其次Boot选项中,Launch CSM请设置为Disable。

  2. 先安利一个显卡驱动的懒人方法(可以先试试,本人是先命令行方式安装驱动之后,发现一些小错误,再使用该方法直接成功。emmmm…….命令行安装了一天还没成功,这个几分钟就好了,心里还是mmp的):
    1): 务必确保1中关闭了Secure Boot
    2): 到System Settings→ Software & Updates→ Additional Drivers:

这里写图片描述

ps: 我在官网查到(384.111)其实就是最新的950M显卡驱动,Apply Changes,输入密码,等待一会安装完成后,重启电脑。
3. 输入:nvidia-smi 和 nvidia-settings看看是否生效:
这里写图片描述
这里写图片描述

出来上面两幅图片懒人方法你就get了~

当然我还是要介绍一下命令行方式安装驱动,我不是显摆哦~,实在是这个头脑不好,下次再装的时候可能又不知道了,留个备份~~~



1. 准备工作:

将NVIDIA-Linux-x86_64-384.111.run 和 cuda_8.0.61_375.26_linux.run下载下来,放到Downloads文件夹下。

2.卸载原有驱动:

cd ~/Download
sudo chmod +x *.run
sudo ./NVIDIA-Linux-x86_64-384.111.run –uninstall
ps: 当然如果你已经安装了cuda toolkit,而且没成功,建议也将cuda toolkit也卸载干净:
cuda toolkit默认安装在 /usr/local/cuda-8.0下:
cd /usr/local/cuda-8.0/bin
sudo ./uninstall_cuda_8.0.pl

3. 禁用nouveau驱动:

sudo vi(gedit) /etc/modprobe.d/blacklist.conf
在最后加入下面三行并保存:
blacklist nouveau
blacklist intel
options nouveau modeset=0
然后执行:sudo update-initramfs -u
重启,执行:lsmod | grep nouveau,如果没有输出,表明禁用成功。

4.禁用X-Window服务:

安装显卡驱动需要禁用该服务,否则会安装终止,并出现相应需要禁用该服务的错误。
sudo service lightdm stop
Ctrl-Alt-F1,之后输入用户名密码进入控制台模式:

5.安装驱动:

一样先进入Downloads文件夹下:
cd ~/Downloads
给run文件赋予执行权限
sudo chmod +x NVIDIA-Linux-x86_64-384.111.run
执行该文件:
sudo ./NVIDIA-Linux-x86_64-384.111.run -no-opengl-files
根据提示安装即可,重启电脑,并输入:nvidia-smi和nvidia-settings验证是否安装成功。
ps:如重启后出现分辨率为800*600,切不可调的情况:
执行下面命令:
sudo mv /etc/X11/xorg.conf /etc/X11/xorg.conf.backup
sudo touch /etc/X11/xorg.conf
sudo reboot

6. 配置环境变量:

sudo gedit /etc/profile
在最后两端加入:

export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH
  • 1
  • 2

sudo env
若显示刚刚加入的环境变量表示成功。



安装cuda toolkit

1.同样进入Downloads文件夹:
cd ~/Downloads
sudo ./cuda_8.0.61_375.26_linux.run -no-opengl-libs
ps:license文件很长,长按CTRL+F(CTRL +B是往前翻一页)即可。

2.选项:
1): Do you accept the previously read EULA?
accept
2): Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?
n(因为我们已经在上面的步骤安装了最新的显卡驱动)
3): Install the CUDA 8.0 Toolkit?
y
4): Enter Toolkit Location
enter
5): Do you want to install a symbolic link at /usr/local/cuda?
y
6): Install the CUDA 8.0 Samples?
y(其实可以是n,不信的话你可以按照最上面的方法卸载cuda toolkit之后,cuda-8.0文件下还是有 Samples文件,当然了,不用太纠结~)
7): Enter CUDA Samples Location
enter

3.安装完成:
成功完成后会显示Installed:

4.测试一下:
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
sudo make -j4
./deviceQuery
这里写图片描述
显示上面的图片则deviceQuery成功。

也可以测试一下带宽:
cd ../bandwidthTest
sudo make -j4
./bandwidthTest
这里写图片描述
如果上面两个都成功,那就恭喜你了~~~
当然有错误的话请及时指正~~~最后祝大家学习进步~~~


https://blog.csdn.net/qq_20492405/article/details/79034430

[专业亲测]Ubuntu16.04安装Nvidia显卡驱动(cuda)--解决你的所有困惑

因为要做毕设需要安装caffe2,配置cuda8.0,但是安装nvidia驱动真的是把我难倒了,看了很多篇博文都没有效果,现在我自己重新总结了下几种 安装方法(亲测有效),希望能帮到大家。

查看版本驱动

NVIDIA驱动


方法一:

ppa源安装驱动

[html] view plain copy
  1. sudo add-apt-repository ppa:graphics-drivers/ppa    
  2. sudo apt-get update    
  3. sudo apt-get install nvidia-390 #此处要根据上面查询到的版本适当更改  
  4. sudo apt-get install mesa-common-dev    
  5. sudo apt-get install freeglut3-dev  

测试

重启之后在终端内输入:

[html] view plain copy
  1. nvidia-smi  #若出现电脑GPU列表,即安装成功  
  2. 或者  
  3. nvidia-settings #显示你的显卡信息  

方法二:手动去官网下载.run文件自己安装


下载完成之后:

卸载原先的所有驱动:

[html] view plain copy
  1. #for case1: original driver installed by apt-get:  
  2. sudo apt-get remove --purge nvidia*  
  3.   
  4. #for case2: original driver installed by runfile:  
  5. sudo chmod +x *.run  
  6. sudo ./NVIDIA-Linux-x86_64-384.59.run --uninstall  

禁用nouveau:

sudo gedit /etc/modprobe.d/blacklist.conf
  • 1

在最后一行添加:

blacklist nouveau

之后,执行命令:

[html] view plain copy
  1. sudo update-initramfs -u  
  2. 电脑重启之后执行  
  3. lsmod | grep nouveau  #没有输出,即说明安装成功  

安装驱动

进入命令行界面

Ctrl-Alt+F1,之后输入用户名和密码登录即可。

给驱动run文件赋予执行权限(若出现[sudo] 计算机名 ◆ ◆ ◆ ◆,这是因为安装了中文的ubuntu,输入登录密码即可)

[html] view plain copy
  1. cd Downloads  
  2. sudo chmod a+x NVIDIA-Linux-x86_64-375.20.run  
安装(注意 参数)
[html] view plain copy
  1. sudo ./NVIDIA-Linux-x86_64-375.20.run –no-opengl-files  
  • –no-opengl-files 只安装驱动文件,不安装OpenGL文件。这个参数最重要
  • –no-x-check 安装驱动时不检查X服务
  • –no-nouveau-check 安装驱动时不检查nouveau
    后面两个参数可不加。

重启,并不会出现循环登录的问题

ps:如果因为自己的操作失误,循环登录不要慌张,也不要重新装系统,跟着我的步骤来,我这些坑都遇到过。

循环登录解决方法

希望大家都能安装成功!如果遇到任何问题,请在评论里描述你的问题!

https://blog.csdn.net/ghw15221836342/article/details/79571559


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
为了配置MXNet环境,我们首先需要做的是安装Python和pip。Python是一种高级编程语言,并且是MXNet的主要支持语言。而pip是Python的包管理工具,用于安装和管理Python包。 接下来,我们需要使用pip来安装MXNet。打开终端或命令提示符,并输入以下命令来安装MXNet: ``` pip install mxnet ``` 安装过程可能需要一些时间,具体时间取决于您的网速和计算机性能。 安装完成后,我们可以在Python中导入MXNet来进行使用。打开Python的交互式命令行或者一个Python脚本,并输入以下命令来导入MXNet: ``` import mxnet as mx ``` 如果没有出现任何错误提示,说明MXNet已成功导入。 接下来,我们可以通过下载一些预训练模型来使用MXNetMXNet提供了一些在ImageNet数据集上预训练的模型,可以用于图像分类、目标检测等任务。我们可以使用以下命令来下载预训练模型: ``` mx.test_utils.download_model('xxx') ``` 这里的'xxx'是所需要下载的模型的名称,具体名称可以在MXNet的官方文档或GitHub页面中找到。 配置MXNet环境还可能涉及其他一些步骤,比如安装CUDA和cuDNN以支持GPU加速,或者安装其他相关的Python库。根据您的具体需求和情况,可能需要完成一些额外的配置步骤。 总之,通过安装Python和pip,然后使用pip安装MXNet,最后导入MXNet并下载需要的预训练模型,我们就可以成功配置MXNet环境,并开始使用MXNet进行深度学习和机器学习的开发工作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值