主成分分析的计算方法

主成分分析(PCA)是一种数据降维技术,通过正交变换将高维数据映射到低维空间,最大化方差。PCA的计算过程包括:计算数据的转置、协方差矩阵、特征值和特征向量,然后选取最大的k个特征值对应向量,最后将特征向量与原始数据相乘得到降维后的数据。
摘要由CSDN通过智能技术生成

  主成分分析(Principal Component AnalysisPCA),是通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。通俗的讲就是将分布在多个维度的高维数据投射到几个轴上。现假设将二维数据投影到一个轴上。如图所示,图中黑色的点表示二维平面中的点,这些点沿L轴的方差最大,因此可以将二维的点投影到L轴上,从二维变成一维,起到了降维的作用。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值