【论文阅读笔记】FCOS代码结合论文阅读

本文详细解析FCOS目标检测模型,包括ResNet-50特征提取,FPN结构,以及前向传播过程中的分类与回归head。重点探讨损失函数的计算,包括分类损失、回归损失和中心度损失,详细阐述了如何处理采样区域、分配目标、计算真实值的过程。
摘要由CSDN通过智能技术生成

encoder

特征提取用的就是resnet50+FPN
backbone用的是ResNet-50,和RetinaNet用的一样的超参,

decoder

在这里插入图片描述
decoder部分就是上图红色框出来的部分,head分为分类head和回归head

(Pdb) self.rpn
FCOSModule(
  (head): FCOSHead(
    (cls_tower): Sequential(
      (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): GroupNorm(32, 256, eps=1e-05, affine=True)
      (2): ReLU()
      (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): GroupNorm(32, 256, eps=1e-05, affine=True)
      (5): ReLU()
      (6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (7): GroupNorm(32, 256, eps=1e-05, affine=True)
      (8): ReLU()
      (9): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (10): GroupNorm(32, 256, eps=1e-05, affine=True)
      (11): ReLU()
    )
    (bbox_tower): Sequential(
      (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): GroupNorm(32, 256, eps=1e-05, affine=True)
      (2): ReLU()
      (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (4): GroupNorm(32, 256, eps=1e-05, affine=True)
      (5): ReLU()
      (6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (7): GroupNorm(32, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值