传送门
这题一开始想出来了一个二元一次递推式,有点麻烦。
一看题解,发现可以转为求全集和答案的补集,挺妙的。
一开始筛素数的数组只开到
106
,RE两个点,开到
5∗106
就AC了,感觉很玄学,毕竟值域
m≤2∗107
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mo=20170408;
struct matrix{
ll a[110][110];
int n;
void clear(){
memset(a,0,sizeof a);
}
matrix operator*(const matrix&x){
matrix ans;
ans.clear();
for(int i=0;i<n;++i)
for(int j=0;j<n;++j)
for(int k=0;k<n;++k)ans.a[i][k]=(ans.a[i][k]+a[i][j]*x.a[j][k])%mo;
ans.n=n;
return ans;
}
}a,b,c,d;
matrix pow(matrix a,int b){
if(b==1)return a;
matrix u=pow(a,b>>1);
if(b&1)return u*u*a;
else return u*u;
}
ll n,m,p,x[110],y[110],pp[5000010],xb,i,j,z,ans;
bool bb[20000010];
int main(){
cin>>n>>m>>p;
y[0]=m/p;
for(i=1;i<=m%p;++i)y[i]=m/p+1;
for(;i<p;++i)y[i]=m/p;
for(i=2;i<=m;++i){
if(!bb[i])pp[++xb]=i,++x[i%p];
for(j=1;j<=xb;++j){
z=pp[j]*i;
if(z>m)break;
bb[z]=1;
if(i%pp[j]==0)break;
}
}
if(n==1)return printf("%d\n",!bb[p] && p<=m),0;
d.n=b.n=p;
for(i=0;i<p;++i)
for(j=0;j<p;++j){
z=(j-i+p)%p;
b.a[i][j]=y[z]-x[z];
d.a[i][j]=y[z];
}
a=pow(b,n-1);
c=pow(d,n-1);
for(j=0;j<p;++j)
ans=(ans+mo+y[j]*c.a[j][0]%mo-(y[j]-x[j])*a.a[j][0]%mo)%mo;
printf("%lld\n",ans);
return 0;
}