bzoj3489,可持久化树套树

从前听说过树套树,也听说过可持久化,今天第一次把两个东西合在一起写。
对于这题,实际上可以转为三维偏序,对于每个元素,可以转化为空间中的一个点( prei,nxti,i ),然后对于询问 l,r ,求满足 prei<l nxti>r lir i 中,ai最大的一个即可
然后将 prei 排序,建立主席树,每个节点保存一颗动态开点可持久化线段树(的根节点下标)。空间复杂度 O(nlog2n)
一开始数组开小,RE了一发。
据说有一种树套堆的 O(logn) 单次询问的方法,并不会啊,哪位大爷能教教我?

#include<bits/stdc++.h>
inline int getint(){
    int x=0;
    char c=getchar();
    while(!isdigit(c))c=getchar();
    for(;isdigit(c);c=getchar())x=x*10+c-48;
    return x;
}
int buf[100];
inline void putint(int x){
    if(!x)putchar('0');
        else{
            int xb=0;
            for(;x;x/=10)buf[++xb]=x%10;
            for(;xb;--xb)putchar(buf[xb]+48);
        }
}
const int N=100010;
struct ys{
    int lc,rc,v;
}t[N*500];
int n,a[N],i,pre[N],nxt[N],b[N],rt[N],j,xb,la,l,r,m;
struct node{
    int pre,nxt,id;
}c[N];
bool cmp(const node a,const node b){
    return a.pre<b.pre;
}
inline int max(const int a,const int b){
    return a>b?a:b;
}
inline void merge(int x){
    t[x].v=max(t[t[x].lc].v,t[t[x].rc].v);
}
void ins2(int x,int&y,int l,int r,int v){
    y=++xb;
    if(l==r){
        t[y].v=a[v];
        return;
    }
    int m=(l+r)>>1;
    if(v>m){
        t[y].lc=t[x].lc;
        ins2(t[x].rc,t[y].rc,m+1,r,v);
        merge(y);
    }else{
        t[y].rc=t[x].rc;
        ins2(t[x].lc,t[y].lc,l,m,v);
        merge(y);
    }
}
void ins(int x,int&y,int l,int r,int i){
    y=++xb;
    ins2(t[x].v,t[y].v,1,n,c[i].id);
    if(l==r)return;
    int m=(l+r)>>1;
    if(c[i].nxt>m){
        t[y].lc=t[x].lc;
        ins(t[x].rc,t[y].rc,m+1,r,i);
    }else{
        t[y].rc=t[x].rc;
        ins(t[x].lc,t[y].lc,l,m,i);
    }
}
int query2(int i,int l,int r,int l1,int r1){
    if(!i)return 0;
    if(l==l1 && r==r1)return t[i].v;
    int m=(l+r)>>1;
    if(l1>m)return query2(t[i].rc,m+1,r,l1,r1);
        else if(r1<=m)return query2(t[i].lc,l,m,l1,r1);
                else return max(query2(t[i].lc,l,m,l1,m),query2(t[i].rc,m+1,r,m+1,r1));
}
int query(int x,int l,int r,int l1,int r1,int l2,int r2){
    if(!x)return 0;
    if(l==l1 && r==r1)return query2(t[x].v,1,n,l2,r2);
    int m=(l+r)>>1;
    if(l1>m)return query(t[x].rc,m+1,r,l1,r1,l2,r2);
        else return max(query(t[x].lc,l,m,l1,m,l2,r2),query(t[x].rc,m+1,r,m+1,r1,l2,r2));
}
int main(){
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;++i)a[i]=getint(),b[i]=n+1;
    for(i=n;i;--i)nxt[i]=c[i].nxt=b[a[i]],b[a[i]]=i,c[i].id=i;
    memset(b,0,sizeof b);
    for(i=1;i<=n;++i)pre[i]=c[i].pre=b[a[i]],b[a[i]]=i;
    std::sort(c+1,c+n+1,cmp);
    for(i=1;!c[i].pre;++i)
        ins(rt[0],rt[0],2,n+1,i);
    for(;i<=n;++i){
        for(j=c[i-1].pre+1;j<c[i].pre;++j)rt[j]=rt[j-1];
        ins(rt[c[i].pre-1],rt[c[i].pre],2,n+1,i); 
    }
    for(i=c[n].pre+1;i<=n;++i)rt[i]=rt[i-1];
    while(m--){
        l=(getint()+la)%n+1;
        r=(getint()+la)%n+1;
        if(l>r)j=l,l=r,r=j;
        putint(la=query(rt[l-1],2,n+1,r+1,n+1,l,r));
        putchar('\n');
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值