数字图像处理(第三版)学习笔记第四章

目录

一、背景知识

二、基本概念

三、取样和取样函数的傅里叶变换

四、单变量的离散傅里叶变换(DFT)

五、两个变量的函数的扩展

六、二维傅里叶变换的性质

1. 性质

2. 二维卷积定理

七、频率域滤波基础

八、频率域滤波器平滑和锐化图像

1. 平滑图像

1.1 理想低通滤波器(ILPF)

1.2 布特沃斯低通滤波器(BLPF)

1.3 高斯低通滤波器(GLPF)

1.4 其他

2. 锐化图像

2.1 理想高通滤波器(IHPF)

2.2 频率域中的拉普拉斯算子

2.3 滤波

2.4 实现

总结


一、背景知识

傅里叶级数:任何周期函数都可以表示为不同频率的正弦和/或余弦和的形式,每个正弦项和/或余弦项和乘以不同的系数。

傅里叶级数和变换作为基础工具被广泛的学习和利用,它们第一次允许人们对从医学监视器和扫描仪到现代电子通信的异常重要的信号进行实际处理。

二、基本概念

复数C的定义是C=R+jI,其中R为复数的实部,I为复数的虚部。其共轭表示为_{C}*。从集合角度来看复数就是平面上一个横坐标为实轴,纵坐标为虚轴的一个点。

傅里叶级数的形式为f(t)= \sum_{n=-\infty }^\infty c_ne^{j\frac{2\Pi n}{T}}t,其中C_n=\frac{1}{T}\int_{-T/2}^{T/2} f(t)e^{-j\frac{2\Pi n}{T}}t为系数。

线性系统和傅里叶变换的核心是冲激及其取样特性。如果t为时间则一个冲击可以看作是幅度无限、持续时间为0、具有单位面积的尖峰信号。在x=x_0处的离散冲激为:

\int_{-\infty }^{\infty} f(t)\delta (x-x_0)dt=f(x_0)

冲激串为无限多个分离的周期冲激单元ΔT之和,即下式:

S_{\Delta T}(t)=\sum_{n=-\infty} ^\infty\delta (t-n\Delta T)

连续变量t的连续函数f(t)的傅里叶变换为下式:

傅里叶反变换为下式:

上面两个式子合称为傅里叶变换对,其指出了一个函数可以由其变换来恢复。傅里叶变换域就是频率域,它的单位是独立于输入变量的每单位周期的。

空间域中两个函数的卷积的傅里叶变换等于两个函数的傅里叶变换在频率域中的乘积。卷积定理是频率域滤波的基础。

三、取样和取样函数的傅里叶变换

前面已经讲过取样的基本概念了,这里是对其进行详细的讲解。模拟取样的一种方法是用一个ΔT单位间隔的冲激串作为取样函数去乘以f(t),如下式:

\tilde{f}(t)=f(t)s_{\Delta T}(t)=\sum_{n=-\infty }^{\infty} f(t)\delta (t-n\Delta T)

式子的每一个分量都是由在该冲激位置处f(t)的值加权后的冲激。

带限函数是指以原点为中心的有限区间(带宽)\left [ -u_{\left \{ max \right \}},u_{\left \{ max \right \}} \right ]之外的频率值,其傅里叶变换函数为0的函数f(t)。

取样定理指出如果以超过函数最高频率的两倍的取样率来获取样本,连续的带限函数可以完全的从它的样本集来恢复。它是数字信号处理理论的基石。

低通滤波器:通过频率范围低端的频率,会消除所有较高的频率。也被叫做理想低通滤波器,因为它在幅度上无限快速的过渡。此外还有滤波器是从函数的取样恢复原始函数的手段叫做重建滤波器

频率混淆是由函数欠取样导致的结果,也被简称为混淆。它是一个过程,在这个过程中一个连续函数的高频分量在取样后的函数中用低频“化妆”了。用有限长度的取样和记录工作混淆是不可避免地。可以通过平滑输入函数减少高频分量的方法来降低混淆的影响,称为抗混淆。

由一组样本集合来重建函数可以减少样本间的内插。卷积是理解取样数据重建的核心。

四、单变量的离散傅里叶变换(DFT)

离散傅里叶变换的表达式为:F_m=\sum_{n=0}^{M-1}f_ne^{-j2\Pi mn / M} ,m=0,1,2....。它是由前面所给出的式子推导出来的,从它可以得出一个与输入样本集合离散傅里叶变换相对应的M个复数离散值得样本集合${F_m}$,其次还可以使用傅里叶反变换(IDFT)复原样本集。离散傅里叶变换对适用于任何均匀取样的有限离散样本集。

DFT的频率分辨率取决于连续函数f(t)被取样的持续时间T,并且DFT跨越的频率范围取决于取样间隔ΔT。

五、两个变量的函数的扩展

前面讲的都是单个变量的概念,这一节将会扩展到两个变量。在坐标\left ( t_0,z_0 \right )处的冲激一般形式为:

\int_{-\infty }^{\infty}\int_{-\infty }^{\infty}f(t,z)\delta (t-t_0,z-z_0)dt dz=f(t_0,z_0)

相对应的二维连续傅里叶变换对为下面的两个表达式:

F(\mu ,\nu )=\int_{-\infty }^{\infty}\int_{-\infty }^{\infty}f(t,z)e^{-j2\Pi (\mu t+\nu z)}dtdz

f(t,z)=\int_{-\infty }^{\infty}\int_{-\infty }^{\infty}F(\mu ,\nu )e^{-j2\Pi (\mu t+\nu z)}d{\mu}d\nu

变量μ和\nu的域定义了连续频率域。

如果一个二维带限连续函数在μ和\nu两个方向上由以大于该函数最高频率两倍的取样效率取样获得的样本表示,则没有信息丢失。

在图像中混淆主要为空间混淆时间混淆两种方式,其中空间混淆是由于欠取样造成的,时间混淆与图像序列中图像间的时间间隔有关。时间混淆常见的例子为“车轮”效应,就是在图像中车轮出现倒转的现象。空间混淆的主要表现形式是人为引入的缺陷,通过稍微散焦被数字化的场景来削弱高频可以降低混淆的影响。

二维内插:由样本集合完美的重建一个带限图像函数要求在空间域使用sinc函数做二维卷积。要求使用无限求和来内插。其最普遍的应用为调整图像大小,放大看作过取样,缩小看作欠取样,与取样的区别为放大和缩小用于数字图像。

另外一种人为缺陷为莫尔(波纹)模式,它有时是使用周期或近似周期分量对场景取样产生的。

二维傅里叶变换(DFT)的表达式为:F_(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)e^{-j2\Pi(ux/M+vy/N)},f(x,y)为大小为$M*N$的数字图像,其傅里叶反变换(IDFT)为:f_(x,y)=\frac{1}{MN}\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}F(u,v)e^{j2\Pi(ux/M+vy/N)},两式构成了傅里叶变换对。

六、二维傅里叶变换的性质

1. 性质

频率域样本间的间隔与空间样本间的间距和样本数成反比。

二维离散傅里叶变换对具有平移和旋转、周期性、对称性(指的是关于序列中心得对称)、傅里叶谱和相角。其中对称性得一个常用性质是实函数f(x,y)得傅里叶变换实共轭对称的,虚函数f(x,y)得傅里叶变换实共轭反对称的。下表为DFT的对称性和相关的性质。R_{\left ( u,v \right )}I_{(u,v)}F_{(u,v)}的实部和虚部。

傅里叶谱和相角中,傅里叶谱表达为|F(u,v)|=[R^2(u,v)+F^2(u,v)]^{1/2},相角表达为\phi (u,v)=arctan[\frac{I(u,v)}{R(u,v)}]。DFT的谱的分量决定正弦波的幅度,在给定的频率处较大的幅度意味着图像中该频率的正弦波比较突出,较小的幅度意味着图像中出现的正弦波较少。

2. 二维卷积定理

二维卷积定理可以由下式表达:f(x,y)\bigstar h(x,y)\Leftrightarrow F(u,v)H(u,v),双箭头表达左右两边组成了一个傅里叶变换对,右边乘积的IDFT是f和h的二维卷积空间。空间卷积的DFT是频率域中相应变换的乘积。

七、频率域滤波基础

频率域滤波由修改一幅图像的傅里叶变换然后计算其反变换得到处理后的结果组成,一幅大小为$M*N$的数字图像f(x,y)的基本滤波公式为:g(x,y)=\Im ^{-1}[H(u,v)F(u,v)]\Im ^{-1}为IDFT,$F(u,v)$为输入图像的DFT,H(u,v)是滤波函数。

高通滤波器将增强尖锐的细节,但是会导致图像对比度的降低;低通滤波器将模糊一幅图像。处理频率域滤波器填充的一种方法是构建一个与图像尺寸相同的滤波器,计算该滤波器的IDFT得到相应的空间滤波器,在空间域填充空间滤波器,然后计算其DFT返回到频率域。

零相位滤波器是等同的影响实部和虚部而不影响相位的滤波器。

空间域和频率域滤波间的纽带是卷积定理,给定一个滤波器可以找到其空间域的等价表示;反之遵循类似的分析和卷积定理,给定一个空间滤波器,可以用该空间滤波器的傅里叶正变换得到其频率域表示,即形成了一个傅里叶变换对:h(x,y)\Leftrightarrow H(u,v)。该滤波器可以由频率域滤波器对一个冲激的响应得到,所以h(x,y)也被叫做H(u,v)的脉冲响应。离散实现中所以数值都是有限的滤波器叫做有限冲激响应(FIR)滤波器

一个高斯函数的正、反傅里叶变换都是实高斯滤波器,一维频率域高斯滤波器的表达式为:

H(u)=Ae^{-u^2/2\sigma ^2x^2}

\sigma为高斯曲线的标准差;空间域中相应滤波器为:

h(x)=\sqrt{2\pi }\sigma Ae^{-2\pi ^2\sigma ^2x^2}

它们的重要之处在于:1.是一个傅里叶变换对,两个分量都是高斯的和实的函数。2.函数表现为互易的。

使用一个全部带正系数的模板就可以在空间域中实现低通滤波。

八、频率域滤波器平滑和锐化图像

1. 平滑图像

平滑是通过对高频的衰减来达到的,就是使用低通滤波器。本节中讲了三种低通滤波器分别为理想滤波器、布特沃斯滤波器和高斯滤波器,它们覆盖了从非常尖锐的滤波到非常平滑的滤波范围。

1.1 理想低通滤波器(ILPF)

在以圆心为原点、以D_0为半径的圆内,无衰减的通过所有频率,在该圆外切断所有频率的二维低通滤波器,就叫做理想低通滤波器(ILPF)。理想低通滤波器是关于原点径向对称的,其可以由一个径向横截面来定义,对于这个横截面,在H(u,v)=1和H(u,v)=0之间的过渡点叫做截止频率

ILPF会导致模糊和振铃现象,可以用卷积定理来解释。模糊是由于sinc函数的中心波瓣引起的,振铃是由外侧较小的波瓣引起的。

1.2 布特沃斯低通滤波器(BLPF)

布特沃斯低通滤波器在截止频率位于距原点D_0处的n阶的传递函数定义为

H(u,v)=\frac{1}{1+[D(u,v)/D_0]^{2n}}

BLPF的传递函数没有在通过频率和滤除频率之间给出明显截止的尖锐的不连续性。二阶BLPF是在有效的低通滤波和可接受的振铃特性之间的好的折中。

1.3 高斯低通滤波器(GLPF)

二维高斯低通滤波器的表达式为:H(u,v)=e^{-D^2(u,v)/2\sigma ^2}。它的傅里叶变换也是高斯的,通过IDFT得到的空间高斯滤波器将不会出现振铃。

下表为三个低通滤波器的基本表达式表。

1.4 其他

低通滤波可以用于机器感知邻域,比如字符识别的应用;其次可以用于印刷和出版业;还可以用于卫星图像和航空图像的处理。

2. 锐化图像

图像的锐化可以在频率域通过高斯滤波来实现,高斯滤波会衰减傅里叶变换中的低频分量而不会扰乱高频分量。高通滤波器是从给定的低通滤波器得到的,使用1减去低通滤波器表达式即可得到高通滤波器的表达式。这里主要讲解了理想、布特沃斯和高斯高通滤波器。

2.1 理想高通滤波器(IHPF)

IHPF和ILPF是相对的,IHPF把以半径为D_0的圆内的所有频率置为0,而毫无衰减的通过圆外的所有频率。它可以用来解释空间域中的振铃现象。

空间域滤波是空间滤波器与图像的卷积,其可以解释为什么较小的物体和线条几乎为白色。

下表为三种高通滤波器的表达式。

2.2 频率域中的拉普拉斯算子

拉普拉斯算子可以用如下的式子在滤波器的频率域中使用:H(u,v)=-4\pi ^2(u^2+v^2) ,拉普拉斯图像可由\bigtriangledown ^2f(x,y)=\Im ^{-1}\left \{ H(u,v)F(u,v) \right \}得到,计算时会引入已标定系数的DFT,这些系数的幅度要比f的最大值大上几个量级,因此需要在计算f(x,y)的DFT前将其值归一化,并用它的最大值除以\bigtriangledown ^2f(x,y),将其带到区间[-1,1]之间。即增强可以用下式表示:

g(x,y)=\Im ^{-1}\left \{ F(u,v)-H(u,v)F(u,v) \right \} =\Im ^{-1}\l\left \{ 1+4\pi ^2D^2(u,v)F(u,v) \right \}

高频强调滤波的一般的公式为g(x,y)=\Im ^{-1}\left \{ \left [ k_1+k_2*H_HP(u,v) \right ]F(u,v) \right \}k_1\geq 0给出控制据原点的偏移量,k_2\geq 0$控制高频的贡献。

2.3 滤波

同态滤波的基本步骤:

它的关键在于照射分量和反射分量的分离,图像的照射分量通常由慢的空间变化来表征,反射分量往往引起突变。图像取对数后的傅里叶变换的低频成分与照射相联系,高频成分与反射相联系。

选择性滤波指的是处理指定的频段或频率矩形的小区域。一共分为两类,第一类为带阻滤波器带通滤波器,第二类为陷波滤波器

带通滤波器可以用从低通滤波器得到高通滤波器的方法从带阻滤波器得出:

H_{BP}(u,v)=1-H_{BR}(u,v)

陷波滤波器拒绝(或通过)事先定义的关于频率矩阵中心的一个邻域的频率,其可以使用中心已被平移到陷波滤波器中心的高通滤波器的乘积来构造。它的主要作用之一是选择性的修改DFT的局部区域。

2.4 实现

f(x,y)的二维DFT可以通过计算f(x,y)的每一行的一维变换,然后沿着计算结果的每一列计算一维变换得到。

可以使用DFT算法来计算IDFT。

快速傅里叶变换可以将乘法和加法的次数降低很多。逐次加倍的FFT名字来自于对于任意的2的整数次幂的M,一个两点变换来自两个单点变换,一个4点变换来自两个两点变换,知道M为2的整数次幂的情形。

总结

在这一张里面,主要讲解了频率域滤波的基础的知识,它是在傅里叶级数的基础之上进行的,傅里叶级数和变换时进行这些操作基本的工具。傅里叶变换分为一维和二维的傅里叶变换,其各自有不同的性质。对于二维傅里叶变换的一些基本的性质需要我们去牢牢记住并会去使用它,这些性质在课本中都有对应的证明过程,游览这些证明过程可以帮助我们更好的去理解这些性质时干什么用的以及该用到什么地方去。其次就是对频率域滤波的基础之上进行了介绍以及如何使用频率域滤波器去平滑以及锐化图像。在平滑和锐化图像里面,有着许多公式的推导过程。通过对这一章的学习可以了解到傅里叶变换的内容以及他在频率域滤波里面的应用。

  • 22
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值