每日打卡(1/1) (补)
传送门:点击打开链接
题目大意:
要求从起点到其余每个点,再从那些点回到起点,要求最小值。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<string>
#include<algorithm>
typedef long long ll;
using namespace std;
const int maxn = 1e7+5;
vector<pair<int,int> >E[maxn];
int p,q,n,d[maxn],d2[maxn],x[maxn],y[maxn],z[maxn];
ll ans;
void init()
{
memset(d,0x3f3f3f3f,sizeof(d));
for(int i=0;i<maxn;i++)
E[i].clear();
}
long long dijkstra()
{
int s = 1;
d[s] = 0;
priority_queue<pair<int,int> >q;
q.push(make_pair(-d[s],s));
while(!q.empty())
{
int now = q.top().second;
q.pop();
for(int i=0;i<E[now].size();i++)
{
int v = E[now][i].first;
if(d[v]>E[now][i].second+d[now])
{
d[v] = E[now][i].second+d[now];
q.push(make_pair(-d[v],v));
}
}
}
long long tot=0;
for(int i=1;i<=p;i++)
tot += d[i];
return tot;
}
int main()
{
// freopen("d://test.txt","r",stdin);
scanf("%d",&n);
while(n--)
{
init();
ans = 0;
scanf("%d%d",&p,&q);
for(int i=0;i<q;i++)
{
scanf("%d%d%d",&x[i],&y[i],&z[i]);
E[x[i]].push_back(make_pair(y[i],z[i]));
}
ans += dijkstra();
init();
for(int i=0;i<q;i++)
E[y[i]].push_back(make_pair(x[i],z[i]));
ans += dijkstra();
cout<<ans<<endl;
}
return 0;
}
题目思路:
首先用优先队列优化的dijkstra,求从起点到其余点的最小值。由于这是一张有向图,所以要求回到起点的最小值时,我们可以这么想:
如果把存的边倒过来,那么本来回来的边就变成了从起点去那的边。因此,我们只需要将边倒过来存一遍,然后再用dijkstra求一次从起点到各顶点的最短路,然后求和。
注意:
统计结果时应该用long long,否则会爆int。