题目大意:
若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。
例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。
又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。
写一个程序,给定一个N(2<=N<=10或N=16)进制数M,其中16进制数字为0-9与A-F,求最少经过几步可以得到回文数。如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”
题目思路:
手动模拟倒序相加的步骤。
#include<bits/stdc++.h>
using namespace std;
int n,m,len,step,a[1001];//n进制
string x;//n进制下的数x
bool judge(int len)
{
for(int i=0;i<=len/2;i++)
if(a[i]!=a[len-i-1])
return 0;
return 1;
}
int fun(int len)
{
int c[10001] = {0},s=0;
for(int i=0;i<len;i++) //倒序相加,但由于是回文数,所以看上去是正序的
{
c[i] = a[i]+a[len-i-1]+c[i];
c[i+1] += c[i]/n; //i+1位加上进的位数
c[i] %= n; //第i位是%n进制数
}
if(c[len]!=0)
len++;
for(int i=len-1;i>=0;i--)
{
a[s++] = c[i];
}
// for(int i=0;i<len;i++)
// cout<<a[i];
// cout<<endl;
return len;
}
int main()
{
scanf("%d",&n);
cin>>x;
len = x.length();
for(int i=0;i<len;i++)
{
if(x[i]<'A') //如果不是十六进制的,那么就是-‘0’
a[i] = x[i]-'0';
else//如果是16进制,就是-‘A’+10
a[i] = x[i]-'A'+10;
}
while(step<=30)
{
step++;
len = fun(len);
if(judge(len)) {
cout<<"STEP="<<step<<endl;
return 0;
}
}
cout<<"Impossible!"<<endl;
return 0;
}