n进制下加法和回文数

点击打开链接

题目大意:

    若一个数(首位不为零)从左向右读与从右向左读都一样,我们就将其称之为回文数。

例如:给定一个10进制数56,将56加65(即把56从右向左读),得到121是一个回文数。

又如:对于10进制数87:
STEP1:87+78 = 165 STEP2:165+561 = 726
STEP3:726+627 = 1353 STEP4:1353+3531 = 4884
在这里的一步是指进行了一次N进制的加法,上例最少用了4步得到回文数4884。

    写一个程序,给定一个N(2<=N<=10或N=16)进制数M,其中16进制数字为0-9与A-F,求最少经过几步可以得到回文数。如果在30步以内(包含30步)不可能得到回文数,则输出“Impossible!”


题目思路:

    手动模拟倒序相加的步骤。

#include<bits/stdc++.h>
using namespace std;

int n,m,len,step,a[1001];//n进制 
string x;//n进制下的数x 

bool judge(int len)
{
	for(int i=0;i<=len/2;i++)
	 if(a[i]!=a[len-i-1])
	  return 0;
	return 1;	
}

int fun(int len)
{
	int c[10001] = {0},s=0;
	for(int i=0;i<len;i++) //倒序相加,但由于是回文数,所以看上去是正序的 
	{
		c[i] = a[i]+a[len-i-1]+c[i];
		c[i+1] += c[i]/n; //i+1位加上进的位数 
		c[i] %= n; //第i位是%n进制数 
	}
	if(c[len]!=0)
	 len++;
	for(int i=len-1;i>=0;i--)
	{
		a[s++] = c[i];
	}
//	for(int i=0;i<len;i++)
//	 cout<<a[i];
//	cout<<endl;
	return len;
}

int main()
{
	scanf("%d",&n);
	cin>>x;	
	len = x.length();
	for(int i=0;i<len;i++)
	{
		if(x[i]<'A') //如果不是十六进制的,那么就是-‘0’ 
		  a[i] = x[i]-'0';
		else//如果是16进制,就是-‘A’+10 
		  a[i] = x[i]-'A'+10;	
	}
	while(step<=30)
	{
		step++;
		len = fun(len);
		if(judge(len)) {
			cout<<"STEP="<<step<<endl;
			return 0;
		}
	}
	cout<<"Impossible!"<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

总想玩世不恭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值