一颗决策树包含一个根结点、若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集。从根结点到叶结点的路径对应于了一个判定测试序列。
目的:为了产生一颗泛化能力强,即处理未见示例能力强的据决策树。
特别注意几点:
1)通常所说的属性是离散,若属性是连续,则要把属性离散化,最简单的是是采用二分法(找划分点)
2)缺失值处理
决策树是一个递归过程,以下三种情形会导致递归返回:
1)当前结点包含的样本属于同一类别,无需划分;
2)当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;
3)当前结点包含的样本集合为空,不能划分。