洛谷传送门
UOJ传送门
题解:
首先我们假设没有点集必须合法的限制,可以得到一个很显然的状压DP的思路。
设 g [ S ] = ( ∑ v ∈ S w [ v ] ) p g[S]=(\sum_{v\in S}w[v])^p g[S]=(∑v∈Sw[v])p,则 f [ S ] = ∑ T ⊂ S f [ T ] g [ S / T ] g [ S ] f[S]=\frac{\sum_{T\subset S }f[T]g[S/T]}{g[S]} f[S]=g[S]∑T⊂Sf[T]g[S/T]
发现是一个子集卷积,考虑用占位幂级数,请自行参考Vfleaking的2015集训队论文。
注意对于每一个 f [ S ] f[S] f[S]我们有 1 g [ S ] \frac{1}{g[S]} g[S]1的贡献,需要在做完一层的乘法之后暴力算上。
然后考虑点集合法的限制,显然非法的导出子图为连通且含有欧拉回路。
先用并查集判断导出子图是否连通,然后判断每个点度数是否为偶数。
代码:
#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const
using std::cerr;
using std::cout;
cs int mod=998244353;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){static ll r;r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
return res;
}
inline void Inc(int &a,int b){(a+=b)>=mod?a-=mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?a+=mod:a;}
cs int N=25,SIZE=1<<21|1;
int n,m,S,p,bin[N],w[N];
std::vector<int> G[N];
int sum[SIZE],inv[SIZE],ctz[SIZE];
int fa[N],d[N],nd[N],cnt;
inline int gf(int x){while(x^fa[x])x=fa[x]=fa[fa[x]];return x;}
inline bool check(int state){
cnt=0;int tmp=state;
while(tmp){
int u=ctz[tmp];
nd[++cnt]=u;
fa[u]=u,d[u]=0;
tmp^=1<<u;
}
for(int re i=1;i<=cnt;++i){
int u=nd[i];
for(int re v:G[u])if(state&(1<<v)){
++d[u],++d[v];
fa[gf(u)]=gf(v);
}
}
for(int re i=1,lt=-1;i<=cnt;++i)
if(fa[nd[i]]==nd[i]){
if(lt==-1)lt=i;
else return true;
}
for(int re i=1;i<=cnt;++i)if(d[nd[i]]&1)return true;
return false;
}
int f[22][SIZE],g[22][SIZE];
inline void FMT(int *A){
for(int re i=1;i<S;i<<=1)
for(int re j=0;j<S;j+=i<<1)
for(int re k=0;k<i;++k)Inc(A[i|j|k],A[j|k]);
}
inline void IFMT(int *A){
for(int re i=1;i<S;i<<=1)
for(int re j=0;j<S;j+=i<<1)
for(int re k=0;k<i;++k)Dec(A[i|j|k],A[j|k]);
}
signed main(){
#ifdef zxyoi
freopen("states.in","r",stdin);
#endif
scanf("%d%d%d",&n,&m,&p);S=1<<n;
for(int i=1,u,v;i<=m;++i){
scanf("%d%d",&u,&v);
G[u-1].push_back(v-1);
}
for(int re i=0;i<n;++i)scanf("%d",w+i);
for(int re i=1;i<S;++i){
int state=i,cnt=0;ctz[i]=(i&1)?0:(ctz[i>>1]+1);
while(state){
++cnt;
Inc(sum[i],w[ctz[state]]);
state^=1<<ctz[state];
}
sum[i]=power(sum[i],p);
g[cnt][i]=check(i)?sum[i]:0;
inv[i]=power(sum[i],mod-2);
}
f[0][0]=1,FMT(f[0]);
for(int re i=1;i<=n;++i)FMT(g[i]);
for(int re i=1;i<=n;++i){
for(int re j=0;j<i;++j)
for(int re k=0;k<S;++k)
Inc(f[i][k],mul(f[j][k],g[i-j][k]));
IFMT(f[i]);
for(int re k=0;k<S;++k)f[i][k]=mul(f[i][k],inv[k]);
if(i!=n)FMT(f[i]);
}
cout<<f[n][S-1]<<"\n";
return 0;
}