【LOJ6363】「地底蔷薇」(拉格朗日反演)(多项式全家桶)

传送门


题解:

神仙题。

注意求的图是带标号的。

以下的讨论的图全部都是带标号的。

首先我们可以求出带标号无向连通图的EGF,然后定一个根 u u u得到有根带标号无向连通图的EGF(注意此时对于大小为0的我们已经记为0个),记为 H ( x ) H(x) H(x),设 b i b_i bi表示i+1个点的带标号点双个数,记 B ( x ) = ∑ i = 0 ∞ b i i ! x i B(x)=\sum_{i=0}^\infty\frac{b_i}{i!}x^i B(x)=i=0i!bixi

考虑根所在的点双大小,将根删去后考虑以点双中的其他点为根,其贡献为 ∑ i = 1 ∞ b i i ! H i ( x ) \sum_{i=1}^\infty \frac{b_i}{i!}H^i(x) i=1i!biHi(x)

考虑上根,则我们有 H ( x ) = x ⋅ e B ( H ( x ) ) H(x)=x\cdot e^{B(H(x))} H(x)=xeB(H(x))

H ( x ) e B ( H ( x ) ) = x \frac{H(x)}{e^{B(H(x))}}=x eB(H(x))H(x)=x

H ( x ) H(x) H(x)的复合逆为 H − 1 ( x ) = x e B ( x ) H^{-1}(x)=\dfrac{x}{e^{B(x)}} H1(x)=eB(x)x B ( x ) = ln ⁡ ( x H − 1 ( x ) ) B(x)=\ln(\frac{x}{H^{-1}(x)}) B(x)=ln(H1(x)x)

现在需要求 B B B的某一项,设 G ( H − 1 ( x ) ) = B ( x ) , G ( x ) = ln ⁡ ( H ( x ) x ) G(H^{-1}(x))=B(x),G(x)=\ln(\frac{H(x)}{x}) G(H1(x))=B(x),G(x)=ln(xH(x))

考虑扩展拉格朗日反演:

[ x s ] B ( x ) = [ x s ] G ( H − 1 ( x ) ) = 1 s [ x − 1 ] G ′ ( x ) 1 H s ( x ) [x^s]B(x)=[x^s]G(H^{-1}(x))=\frac{1}{s}[x^{-1}]G^\prime(x)\frac{1}{H^s(x)} [xs]B(x)=[xs]G(H1(x))=s1[x1]G(x)Hs(x)1

于是可以预处理之后多项式快速幂 O ( s log ⁡ s ) O(s\log s) O(slogs)算出 [ x s ] B ( x ) [x^s]B(x) [xs]B(x)。由于总和有保证,所以复杂度是 O ( S log ⁡ S ) O(S\log S) O(SlogS)

然后设 C ( x ) = ∑ i ∈ S b i i ! x i C(x)=\sum_{i\in S}\frac{b_i}{i!}x^i C(x)=iSi!bixi,设 F ( x ) F(x) F(x) 表示满足题意的有标号有根联通图的EGF,则 F ( x ) = x e C ( F ( x ) ) F(x)=xe^{C(F(x))} F(x)=xeC(F(x))

F ( x ) F(x) F(x)的第 n n n项其实也可以考虑拉格朗日反演。

由于 F ( x ) e C ( F ( x ) ) = x \frac{F(x)}{e^{C(F(x))}}=x eC(F(x))F(x)=x

F − 1 ( x ) = x e C ( x ) F^{-1}(x)=\frac{x}{e^{C(x)}} F1(x)=eC(x)x

[ x n ] F ( x ) = 1 n [ x − 1 ] 1 F − n ( x ) = 1 n [ x n − 1 ] e n C ( x ) [x^n]F(x)=\frac{1}{n}[x^{-1}]\frac{1}{F^{-n}(x)}=\frac{1}{n}[x^{n-1}]e^{nC(x)} [xn]F(x)=n1[x1]Fn(x)1=n1[xn1]enC(x)

好的多项式全家桶。


代码:

#include<bits/stdc++.h>
#define ll long long
#define re register
#define cs const

using std::cerr;
using std::cout;

cs int mod=998244353;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline int mul(int a,int b){static ll r;r=(ll)a*b;return r>=mod?r%mod:r;}
inline int power(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));
	return res;
}
inline void Inc(int &a,int b){(a+=b)>=mod&&(a-=mod);}
inline void Dec(int &a,int b){(a-=b)<0&&(a+=mod);}
inline void Mul(int &a,int b){a=mul(a,b);}

typedef std::vector<int> Poly;

std::ostream &operator<<(std::ostream &out,cs Poly &a){
	if(!a.size())out<<"empty ";
	for(int re i=0;i<a.size();++i)out<<a[i]<<" ";
	return out;
}

cs int bit=20,SIZE=1<<bit|1;

int r[SIZE],*w[bit+1];
int fac[SIZE],ifac[SIZE],inv[SIZE];
inline void init_NTT(){
	for(int re i=1;i<=bit;++i)w[i]=new int[1<<i-1];
	int wn=power(3,mod-1>>bit);w[bit][0]=1;
	for(int re i=1;i<(1<<bit-1);++i)w[bit][i]=mul(w[bit][i-1],wn);
	for(int re i=bit-1;i;--i)
	for(int re j=0;j<(1<<i-1);++j)w[i][j]=w[i+1][j<<1];
	inv[0]=inv[1]=ifac[0]=ifac[1]=fac[0]=fac[1]=1;
	for(int re i=2;i<SIZE;++i){
		fac[i]=mul(fac[i-1],i);
		inv[i]=mul(inv[mod%i],mod-mod/i);
		ifac[i]=mul(ifac[i-1],inv[i]);
	}
}
inline void NTT(Poly &A,int len,int typ){
	for(int re i=0;i<len;++i)if(i<r[i])std::swap(A[i],A[r[i]]);
	for(int re i=1,d=1;i<len;i<<=1,++d)
	for(int re j=0;j<len;j+=i<<1)
	for(int re k=0;k<i;++k){
		int &t1=A[j+k],&t2=A[i+j+k],t=mul(t2,w[d][k]);
		t2=dec(t1,t),Inc(t1,t);
	}
	if(typ==-1){
		std::reverse(A.begin()+1,A.begin()+len);
		for(int re i=0,inv=power(len,mod-2);i<len;++i)Mul(A[i],inv);
	}
}
inline void init_rev(int l){
	for(int re i=0;i<l;++i)r[i]=r[i>>1]>>1|((i&1)?l>>1:0);
}

inline Poly Deriv(Poly a){
	for(int re i=0;i+1<a.size();++i)a[i]=mul(a[i+1],i+1);
	a.pop_back();return a;
}

inline Poly Integ(Poly a){a.push_back(0);
	for(int re i=a.size()-1;i;--i)a[i]=mul(a[i-1],inv[i]);
	a[0]=0;return a;
}

inline Poly operator*(Poly a,Poly b){
	int deg=a.size()+b.size()-1,l=1;
	while(l<deg)l<<=1;init_rev(l);
	a.resize(l),NTT(a,l,1);
	b.resize(l),NTT(b,l,1);
	for(int re i=0;i<l;++i)Mul(a[i],b[i]);
	NTT(a,l,-1),a.resize(deg);
	return a;
}

inline Poly Inv(cs Poly &a,int lim){
	int n=a.size();Poly c,b(1,power(a[0],mod-2));
	for(int re l=4;(l>>2)<lim;l<<=1){
		init_rev(l);
		c.resize(l>>1);for(int re i=0;i<(l>>1);++i)c[i]=i<n?a[i]:0;
		c.resize(l),NTT(c,l,1);
		b.resize(l),NTT(b,l,1);
		for(int re i=0;i<l;++i)Mul(b[i],dec(2,mul(b[i],c[i])));
		NTT(b,l,-1),b.resize(l>>1);
	}b.resize(lim);
	return b;
}

inline Poly Ln(Poly a,int lim){
	a=Integ(Deriv(a)*Inv(a,lim));
	a.resize(lim);
	return a;
}
inline Poly Ln(cs Poly &a){return Ln(a,a.size());}

inline Poly Exp(cs Poly &a,int lim){
	int n=a.size();Poly c,b(1,1);
	for(int re l=2;(l>>1)<lim;l<<=1){
		c=Ln(b,l);
		for(int re i=0;i<l;++i)c[i]=dec(i<n?a[i]:0,c[i]);
		Inc(c[0],1);
		b=b*c;b.resize(l);
	}b.resize(lim);
	return b;
}
inline Poly Exp(cs Poly &a){return Exp(a,a.size());}

inline Poly Ksm(Poly a,int k){
	a=Ln(a);
	for(int re i=0;i<a.size();++i)Mul(a[i],k);
	a=Exp(a);
	return a;
}

int n,m;

Poly H,G,T,F,B;

inline void init(){
	F.resize(n+5);B.resize(n+5);
	for(int re i=0;i<F.size();++i)F[i]=power(2,(ll)i*(i-1)/2%(mod-1),ifac[i]);
	H=Ln(F);
	for(int re i=0;i<H.size();++i)Mul(H[i],i);
	G.resize(H.size());
	for(int re i=0;i<G.size();++i)G[i]=H[i+1];
	G=Deriv(Ln(G));
	T=H;for(int re i=0;i+1<T.size();++i)T[i]=T[i+1];T.pop_back();
	T=Ln(T);
}

inline void get_B(int s){
	assert(s<B.size());
	--s;Poly C(T.begin(),T.begin()+s),D(G.begin(),G.begin()+s);
	for(int re i=0;i<C.size();++i)Mul(C[i],mod-s);
	C=Exp(C)*D;
	B[s]=mul(inv[s],C[s-1]);
}

inline int get_A(int n){
	for(int re i=0;i<B.size();++i)Mul(B[i],n);
	B=Exp(B);
	return mul(B[n-1],mul(inv[n],fac[n-1]));
}

signed main(){
#ifdef zxyoi
	freopen("the_rose.in","r",stdin);
#endif
	scanf("%d%d",&n,&m);
	init_NTT();init();
	while(m--){
		int s;scanf("%d",&s);
		get_B(s);
	}
	cout<<get_A(n)<<"\n";
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值