LeetCode - 518. Coin Change 2(零钱兑换 II)(换钱的方法数问题)

33 篇文章 0 订阅

LeetCode - 518. Coin Change 2(零钱兑换 II)(换钱的方法数问题)

  • 暴力递归解法
  • 记忆化搜索解法
  • 二维dp解法
  • 二维dp优化
  • 滚动数组优化空间O(n)

题目链接
题意

在这里插入图片描述


暴力递归解法

暴力递归的解法,比如上面的例子:

  • 01元的货币,让[2,5]组成剩下的5元,最终方法数为sum1;
  • 11元的货币,让[2,5]组成剩下的4元,最终方法数为sum2;
  • 21元的货币,让[2,5]组成剩下的3元,最终方法数为sum3;
  • 31元的货币,让[2,5]组成剩下的2元,最终方法数为sum4;
  • 41元的货币,让[2,5]组成剩下的1元,最终方法数为sum5;
  • 51元的货币,让[2,5]组成剩下的0元,最终方法数为sum6;

那么我们要求的结果就是sum1 + sum2 + sum3 + sum4 + sum5 + sum6;
根据上面的分析过程可以写出一个递归函数process(coins,index,amount)表示的是用coins[index,N-1]这些硬币来组成amount,返回的总的方法数,所以代码如下(超时):

class Solution {
    public int change(int amount, int[] coins) {
        if (amount == 0)
            return 1;
        if (coins == null || coins.length == 0 || amount < 0)
            return 0;
        return process(coins, 0, amount);
    }

    public int process(int[] coins, int index, int amount) {
        int res = 0;
        if (index == coins.length) //到了最后一个说明找到了一种方法
            return res = amount == 0 ? 1 : 0;
        for (int i = 0; i * coins[index] <= amount; i++)
            res += process(coins, index + 1, amount - coins[index] * i);
        return res;
    }
}

记忆化搜索解法

上面的递归过程计算了许多的重复子问题,我们可以在递归的过程中,记录子问题的解,当再次用到的时候,如果之前已经计算过,可以取出来用。减少递归过程

class Solution {
    public int change(int amount, int[] coins) {
        if (amount == 0)
            return 1;
        if (coins == null || coins.length == 0 || amount < 0)
            return 0;
        int[][] map = new int[coins.length + 1][amount + 1];
        return process(coins, 0, amount, map);
    }

    public int process(int[] coins, int index, int amount, int[][] map) {
        int res = 0; //方法数
        if (index == coins.length)
            res = amount == 0 ? 1 : 0;
        else {
            int mapValue = 0;
            for (int i = 0; i * coins[index] <= amount; i++) {
                mapValue = map[index + 1][amount - i * coins[index]];
                if (mapValue != 0) {
                    res += mapValue == -1 ? 0 : mapValue;
                } else {
                    res += process(coins, index + 1, amount - i * coins[index], map);
                }
            }
        }
        map[index][amount] = res == 0 ? -1 : res;
        return res;
    }
}

注意这里map的几个特殊值: 0表示没有计算过。-1表示计算过但是返回值是0;其他值就是计算过且不为0;

或者不用上面的特殊值,初始化map-1,程序就会变得简单一点:

class Solution {
    public int change(int amount, int[] coins) {
        if (amount == 0)
            return 1;
        if (coins == null || coins.length == 0 || amount < 0)
            return 0;
        int[][] map = new int[coins.length + 1][amount + 1];
        
        for(int i = 0; i < map.length; i++)
            Arrays.fill(map[i], -1);
        
        return process(coins, 0, amount, map);
    }

    public int process(int[] coins, int index, int amount, int[][] map) {
        int res = 0; //方法数
        if (index == coins.length)
            res = amount == 0 ? 1 : 0;
        else {
            int mapValue = 0;
            for (int i = 0; i * coins[index] <= amount; i++) {
                mapValue = map[index + 1][amount - i * coins[index]];
                if (mapValue != -1) 
                    res += mapValue;
                else 
                    res += process(coins, index + 1, amount - i * coins[index], map);
            }
        }
        return map[index][amount] = res;
    }
}

再简写:

class Solution {
    public int change(int amount, int[] coins) {
        if (amount == 0)
            return 1;
        if (coins == null || coins.length == 0 || amount < 0)
            return 0;
        int[][] map = new int[coins.length + 1][amount + 1];
        
        for(int i = 0; i < map.length; i++)
            Arrays.fill(map[i], -1);
        
        return process(coins, 0, amount, map);
    }

    public int process(int[] coins, int index, int amount, int[][] map) {
        if (index == coins.length)
            return amount == 0 ? 1 : 0;
        if(map[index][amount] != -1)
            return map[index][amount];
        int res = 0;
        for (int i = 0; i * coins[index] <= amount; i++)
            res += process(coins, index + 1, amount - i * coins[index], map);
        return map[index][amount] = res;
    }
}

二维dp解法

这个方法也是通过递归的方法改过来的,递归中的边界条件就是一开始要填的位置,如下图。

这里写图片描述

  • 我们先填好最后一行的dp表(根据递归函数)
  • 然后看一个普通的位置依赖的是左边的一些位置(逐渐减,不越界)
  • 然后我们就通过递推的方向推出整张dp表,右上角是答案;
class Solution {
    public int change(int amount, int[] coins) {
        if (amount == 0)
            return 1;
        if (coins == null || coins.length == 0 || amount < 0)
            return 0;
        int len = coins.length;
        int[][] dp = new int[len + 1][amount + 1];
        for (int j = 0; j <= amount; j++) dp[len][j] = 0;
        dp[len][0] = 1;
        int sum = 0;
        for (int i = len - 1; i >= 0; i--) {
            for (int j = 0; j <= amount; j++) {
                sum = 0;
                for (int k = 0; j - coins[i] * k >= 0; k++) sum += dp[i + 1][j - coins[i] * k];
                dp[i][j] = sum;
            }
        }
        return dp[0][amount];
    }
}

二维dp优化

在计算左边的一些依赖的值的时候,我们迭代的求和,其实没有必要,因为dp[i][j-coins[j]]已经将前面的和求了一遍,我们可以直接拿过来用就可以了;于是里面的第三层循环就可以不写;

class Solution {
    public int change(int amount, int[] coins) {
        if (amount == 0)
            return 1;
        if (coins == null || coins.length == 0 || amount < 0)
            return 0;
        int len = coins.length;
        int[][] dp = new int[len + 1][amount + 1];
        for (int j = 0; j <= amount; j++) dp[len][j] = 0;
        dp[len][0] = 1;
        for (int i = len - 1; i >= 0; i--) {
            for (int j = 0; j <= amount; j++) {
                dp[i][j] = j - coins[i] >= 0 ? dp[i][j - coins[i]] + dp[i + 1][j] : dp[i + 1][j];
            }
        }
        return dp[0][amount];
    }
}

滚动数组优化空间O(n)

由于递推的方向是从下到上,从右到左,所以我们可以通过滚动数组进行优化,dp[i-coins[j]]的值还是之前的dp[i][i-coins[j]],因为此时的dp[i]还没有更新,所以dp[i]也是dp[i+1][j],所以只需要一个一维数组即可;

class Solution {
    public int change(int amount, int[] coins) {
        if (amount == 0)
            return 1;
        if (coins == null || coins.length == 0 || amount < 0)
            return 0;
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        for (int i = coins.length - 1; i >= 0; i--) {
            for (int j = 0; j <= amount; j++) {
                dp[j] = j - coins[i] >= 0 ? dp[j - coins[i]] + dp[j] : dp[j];
            }
        }
        return dp[amount];
    }
}

### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的型,很多目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的目,按照难度从简单到困难排列。每个目都有详细的目描述、输入输出样例、目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的学理论和强大的实用效果,动态规划在计算机科学、学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的目涵盖了各种难度级别和场景的问题。从简单的斐波那契列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契问题时,就可以定义一个二维组f[i][j],代表第i项斐波那契列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案。这个问题的解法非常简单,只需要维护一个长度为n的组,记录到达每一级楼梯的方案即可。类似的问题还有“零钱兑换”、“乘积最大子组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解都非常重要。除了刷以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与据结构基础》等,来深入理解这种算法思想。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值