大数据-Spark(六)
RDD常用的算子操作演示
为了方便前期的测试和学习,可以使用spark-shell进行演示:
spark-shell --master local[2]
map
val rdd1 = sc.parallelize(List(5, 6, 4, 7, 3, 8, 2, 9, 1, 10))
//把rdd1中每一个元素乘以10
rdd1.map(_*10).collect
filter
val rdd1 = sc.parallelize(List(5, 6, 4, 7, 3, 8, 2, 9, 1, 10))
//把rdd1中大于5的元素进行过滤
rdd1.filter(x => x >5).collect
flatMap
val rdd1 = sc.parallelize(Array("a b c", "d e f", "h i j"))
//获取rdd1中元素的每一个字母
rdd1.flatMap(_.split(" ")).collect
intersection、union
val rdd1 = sc.parallelize(List(5, 6, 4, 3))
val rdd2 = sc.parallelize(List(1, 2, 3, 4))
//求交集
rdd1.intersection(rdd2).collect
//求并集
rdd1.union(rdd2).collect
distinct
val rdd1 = sc.parallelize(List(1,1,2,3,3,4,5,6,7))
//去重
rdd1.distinct
join、groupByKey
val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("shuke", 2)))
//求join
val rdd3 = rdd1.join(rdd2)
rdd3.collect
//求并集
val rdd4 = rdd1 union rdd2
rdd4.groupByKey.collect
cogroup
val rdd1 = sc.parallelize(List(("tom", 1), ("tom", 2), ("jerry", 3), ("kitty", 2)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 1), ("jim", 2)))
//分组
val rdd3 = rdd1.cogroup(rdd2)
rdd3.collect
reduce
val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5))
//reduce聚合
val rdd2 = rdd1.reduce(_ + _)
rdd2.collect
val rdd3 = sc.parallelize(List("1","2","3","4","5"))
rdd3.reduce(_+_)
//这里可能会出现多个不同的结果,由于元素在不同的分区中,每一个分区都是一个独立的task线程去运行。
//这些task运行有先后关系
reduceByKey、sortByKey
val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 3), ("kitty", 2), ("shuke", 1)))
val rdd2 = sc.parallelize(List(("jerry", 2), ("tom", 3), ("shuke", 2), ("kitty", 5)))
val rdd3 = rdd1.union(rdd2)
//按key进行聚合
val rdd4 = rdd3.reduceByKey(_ + _)
rdd4.collect
//按value的降序排序
val rdd5 = rdd4.map(t => (t._2, t._1)).sortByKey(false).map(t => (t._2, t._1))
rdd5.collect
repartition、coalesce
val rdd1 = sc.parallelize(1 to 10,3)
//打印rdd1的分区数
rdd1.partitions.size
//利用repartition改变rdd1分区数
//减少分区
rdd1.repartition(2).partitions.size
//增加分区
rdd1.repartition(4).partitions.size
//利用coalesce改变rdd1分区数
//减少分区
rdd1.coalesce(2).partitions.size
//repartition: 重新分区, 有shuffle
//coalesce: 合并分区 / 减少分区 默认不shuffle
//默认 coalesce 不能扩大分区数量。除非添加true的参数,或者使用repartition。
//适用场景:
//1、如果要shuffle,都用 repartition
//2、不需要shuffle,仅仅是做分区的合并,coalesce
//3、repartition常用于扩大分区。
map、mapPartitions 、mapPartitionsWithIndex
val rdd1=sc.parallelize(1 to 10,5)
rdd1.map(x => x*10)).collect
rdd1.mapPartitions(iter => iter.map(x=>x*10)).collect
//index表示分区号 可以获取得到每一个元素属于哪一个分区
rdd1.mapPartitionsWithIndex((index,iter)=>iter.map(x=>(index,x)))
map:用于遍历RDD,将函数f应用于每一个元素,返回新的RDD(transformation算子)。
mapPartitions:用于遍历操作RDD中的每一个分区,返回生成一个新的RDD(transformation算子)。
总结:
如果在映射的过程中需要频繁创建额外的对象,使用mapPartitions要比map高效
比如,将RDD中的所有数据通过JDBC连接写入数据库,如果使用map函数,可能要为每一个元素都创建一个connection,这样开销很大,如果使用mapPartitions,那么只需要针对每一个分区建立一个connection。
foreach、foreachPartition
val rdd1 = sc.parallelize(List(5, 6, 4, 7, 3, 8, 2, 9, 1, 10))
//foreach实现对rdd1里的每一个元素乘10然后打印输出
rdd1.foreach(x=>println(x * 10))
//foreachPartition实现对rdd1里的每一个元素乘10然后打印输出
rdd1.foreachPartition(iter => iter.foreach(x=>println(x * 10)))
foreach:用于遍历RDD,将函数f应用于每一个元素,无返回值(action算子)。
foreachPartition: 用于遍历操作RDD中的每一个分区。无返回值(action算子)。
总结:
一般使用mapPartitions或者foreachPartition算子比map和foreach更加高效,推荐使用。
此博文仅供学习参考,如有错误欢迎指正。
上一篇《大数据-Spark(五)》
下一篇《大数据-Spark(七)》