递归小结(更新中)

本文介绍了递归的概念,作为解决问题的一种方法,它涉及将问题分解为更小的同类子问题。递归常用于数据结构如斐波那契数列和二叉树的遍历。以二叉树的前序遍历为例,通过递归实现,当节点为空时返回0,否则返回左右子树的最大深度加1。递归解题的关键在于找到正确的递归公式和返回条件。
摘要由CSDN通过智能技术生成

目录

递归是什么

递归能解决的问题

举例

1.二叉树的前序遍历


递归是什么

递归是一种重复将问题分解为同类的子问题而解决问题的方法。形式通常为函数的自调用。

递归有“递”和“归”2个环节,先将问题从大往小了递,获得小问题的答案之后再往大问题“归”。

递归通常要找到递归公式以及return的条件。

递归能解决的问题

1. 数据的定义是按照递归定义的,比如斐波那契函数:

fact(n) = \left\{\begin{matrix} n \, \, \, \, \, \, \, \, \, \, \, \, (if \,\, \, \, \, \, n=0)\\ n*fact(n-1) (if \, \, \, \, \, \, n >0) \end{matrix}\right.

2. 问题的解法按照递归算法实现,比如汉诺塔。

3. 数据的结构形式按照递归定义,比如二叉树。

举例

1.二叉树的前序遍历

https://blog.csdn.net/zy1994384/article/details/128269644?spm=1001.2014.3001.5502

2.二叉树的最大深度

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

示例:
给定二叉树 [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7
返回它的最大深度 3 

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/maximum-depth-of-binary-tree

解题思路:递归的终止条件:当前节点为空,表示当前高度为0
递归的子问题:获取当前节点,左右子树节点的高度的最大值,同时+1,表示当前节点的高度

int maxDepth(struct TreeNode* root)
{
    if (root == NULL) {
        return 0;
    }
    else return fmax(maxDepth(root->left), maxDepth(root->right)) + 1;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值