时间序列的深度学习算法全面总结(建议收藏)

本文全面总结了深度学习在时间序列预测领域的应用,涵盖了RNN、LSTM、GRU、SRU、CNN、注意力机制以及Transformer等多个模型。通过详细阐述每个模型的工作原理和优缺点,展示了如何利用这些模型进行时序预测,包括模型构建、训练和推理。文章还探讨了不同输入输出长度、batch_size对预测效果的影响,并提到了多个新兴的时序预测模型,如Autoformer、Pyraformer、FEDformer和Crossformer等。
摘要由CSDN通过智能技术生成

1 概述
深度学习方法是一种利用神经网络模型进行高级模式识别和自动特征提取的机器学习方法,近年来在时序预测领域取得了很好的成果。常用的深度学习模型包括循环神经网络(RNN)、长短时记忆网络(LSTM)、门控循环单元(GRU)、卷积神经网络(CNN)、注意力机制(Attention)和混合模型(Mix )等,与机器学习需要经过复杂的特征工程相比,这些模型通常只需要经数据预处理、网络结构设计和超参数调整等,即可端到端输出时序预测结果。深度学习算法能够自动学习时间序列数据中的模式和趋势,神经网络涉及隐藏层数、神经元数、学习率和激活函数等重要参数,对于复杂的非线性模式,深度学习模型有很好的表达能力。在应用深度学习方法进行时序预测时,需要考虑数据的平稳性和周期性,选择合适的模型和参数,进行训练和测试,并进行模型的调优和验证。

图片

2 算法展示
2.1 RNN类
在RNN中,每个时刻的输入和之前时刻的状态被映射到隐藏状态中,同时根据当前的输入和之前的状态,预测下一个时刻的输出。RNN的一个重要特性是可以处理变长的序列数据,因此非常适用于时序预测中的时间序列数据。另外,RNN还可以通过增加LSTM、GRU、SRU等门控机制来提高模型的表达能力和记忆能力。

2.1.1 RNN(1990)
Paper:Finding Structure in Time

RNN(循环神经网络)是一种强大的深度学习模型,经常被用于时间序列预测。RNN通过在时间上展开神经网络,将历史信息传递到未来,从而能够处理时间序列数据中的时序依赖性和动态变化。在RNN模型的构建中,LSTM和GRU模型常被使用,因为它们可以处理长序列,并具有记忆单元和门控机制,能够有效地捕捉时间序列中的时序依赖性。

RNN

model = RNNModel(
model=“RNN”,
hidden_dim=60,
dropout=0,
batch_size=100,
n_epochs=200,
optimizer_kwargs={“lr”: 1e-3},
# model_name=“Air_RNN”,
log_tensorboard=True,
random_state=42,
training_length=20,
input_chunk_length=60,
# force_reset=True,
# save_checkpoints=True,
)
图片
2.1.2 LSTM(1997)
Paper:Long Short-Term Memory

LSTM(长短期记忆)是一种常用的循环神经网络模型,经常被用于时间序列预测。相对于基本的RNN模型,LSTM具有更强的记忆和长期依赖能力,可以更好地处理时间序列数据中的时序依赖性和动态变化。在LSTM模型的构建中,关键的是对LSTM单元的设计和参数调整。LSTM单元的设计可以影响模型的记忆能力和长期依赖能力,参数的调整可以影响模型的预测准确性和鲁棒性。

LSTM

model = RNNModel(
model=“LSTM”,
hidden_dim=60,
dropout=0,
batch_size=100,
n_epochs=200,
optimizer_kwargs={“lr”: 1e-3},
# model_name=“Air_RNN”,
log_tensorboard=True,
random_state=42,
training_length=20,
input_chunk_length=60,
# force_reset=True,
# save_checkpoints=True,
)
图片
2.1.3 GRU(2014)
Paper:Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

GRU(门控循环单元)是一种常用的循环神经网络模型,与LSTM模型类似,也是专门用于处理时间序列数据的模型。GRU模型相对于LSTM模型来说,参数更少,运算速度也更快,但是仍然能够处理时间序列数据中的时序依赖性和动态变化。在GRU模型的构建中,关键的是对GRU单元的设计和参数调整。GRU单元的设计可以影响模型的记忆能力和长期依赖能力,参数的调整可以影响模型的预测准确性和鲁棒性。

GRU

model = RNNModel(
model=“GRU”,
hidden_dim=60,
dropout=0,
batch_size=100,
n_epochs=200,
optimizer_kwargs={“lr”: 1e-3},
# model_name=“Air_RNN”,
log_tensorboard=True,
random_state=42,
training_length=20,
input_chunk_length=60,
# force_reset=True,
# save_checkpoints=True,
)
图片
2.1.4 SRU(2018)
Paper:Simple Recurrent Units for Highly Parallelizable Recurrence

SRU(随机矩阵单元)是一种基于矩阵计算的循环神经网络模型,也是专门用于处理时间序列数据的模型。SRU模型相对于传统的LSTM和GRU模型来说,具有更少的参数和更快的运算速度,同时能够处理时间序列数据中的时序依赖性和动态变化。在SRU模型的构建中,关键的是对SRU单元的设计和参数调整。SRU单元的设计可以影响模型的记忆能力和长期依赖能力,参数的调整可以影响模型的预测准确性和鲁棒性。

2.2 CNN类
CNN通过卷积层和池化层等操作可以自动提取时间序列数据的特征,从而实现时序预测。在应用CNN进行时序预测时,需要将时间序列数据转化为二维矩阵形式,然后利用卷积和池化等操作进行特征提取和压缩,最后使用全连接层进行预测。相较于传统的时序预测方法,CNN能够自动学习时间序列数据中的复杂模式和规律,同时具有更好的计算效率和预测精度。

2.2.1 WaveNet(2016)
Paper:WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

WaveNet是由DeepMind团队在2016年提出的一种用于生成语音的神经网络模型,它的核心思想是利用卷积神经网络来模拟语音信号的波形,并使用残差连接和门控卷积操作来提高模型的表示能力。除了用于语音生成,WaveNet还可以应用于时序预测任务。在时序预测任务中,我们需要预测给定时间序列的下一个时间步的取值。通常情况下,我们可以将时间序列看作是一个一维向量,并将其输入到WaveNet模型中,得到下一个时间步的预测值。

在WaveNet模型的构建中,关键的是对卷积层的设计和参数调整。卷积层的设计可以影响模型的表达能力和泛化能力,参数的调整可以影响模型的预测准确性和鲁棒性。

2.2.2 TCN(2018)
Paper:An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

TCN(Temporal Convolutional Network)是一种基于卷积神经网络的时序预测算法,其设计初衷是为了解决传统RNN(循环神经网络)在处理长序列时存在的梯度消失和计算复杂度高的问题。。相比于传统的RNN等序列模型,TCN利用卷积神经网络的特点,能够在更短的时间内对长期依赖进行建模,并且具有更好的并行计算能力。TCN模型由多个卷积层和残差连接组成,其中每个卷积层的输出会被输入到后续的卷积层中,从而实现对序列数据的逐层抽象和特征提取。TCN还采用了类似于ResNet的残差连接技术,可以有效地减少梯度消失和模型退化等问题,而空洞卷积可以扩大卷积核的感受野,从而提高模型的鲁棒性和准确性。

TCN模型的结构如下图所示:

图片
TCN模型的预测过程包括以下几个步骤:

输入层:接收时间序列数据的输入。
卷积层:采用一维卷积对输入数据进行特征提取和抽象,每个卷积层包含多个卷积核,可以捕获不同尺度的时间序列模式。
残差连接:类似于ResNet,通过将卷积层的输出与输入进行残差连接,可以有效地减少梯度消失和模型退化等问题,提高模型的鲁棒性。
重复堆叠:重复堆叠多个卷积层和残差连接,逐层提取时间序列数据的抽象特征。
池化层:在最后一个卷积层之后添加一个全局平均池化层,将所有特征向量进行平均,得到一个固定长度的特征向量。
输出层:将池化层的输出通过一个全连接层进行输出,得到时间序列的预测值。
TCN模型的优点包括:

能够处理长序列数据,并且具有良好的并行性。
通过引入残差连接和空洞卷积等技术,避免了梯度消失和过拟合的问题。
相对于传统RNN模型,TCN模型具有更高的计算效率和预测准确率。

推荐关注@公众号:数

  • 15
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习算法在数据建模方面有多种应用。以下是其中一些常见的深度学习算法: 1. 神经网络(Neural Networks):神经网络是深度学习的基础,它由多个神经元层组成,每个神经元层都与下一层相连。神经网络可以用于分类、回归和聚类等任务。 2. 卷积神经网络(Convolutional Neural Networks,CNN):CNN主要用于图像识别和计算机视觉任务。它通过卷积层、池化层和全连接层来提取图像特征并进行分类。 3. 递归神经网络(Recurrent Neural Networks,RNN):RNN主要用于处理序列数据,如自然语言处理和语音识别。它通过循环连接来处理序列中的时序信息。 4. 长短期记忆网络(Long Short-Term Memory,LSTM):LSTM是一种特殊类型的RNN,它能够更好地处理长期依赖关系。LSTM在语言模型、机器翻译和语音识别等任务中表现出色。 5. 生成对抗网络(Generative Adversarial Networks,GAN):GAN由生成器和判别器组成,它们通过对抗训练的方式来生成逼真的数据。GAN可以用于生成图像、音频和文本等。 6. 自编码器(Autoencoders):自编码器是一种无监督学习算法,用于学习数据的低维表示。它可以用于数据压缩、特征提取和异常检测等任务。 7. 强化学习(Reinforcement Learning):强化学习是一种通过与环境交互来学习最优行为的算法。它在游戏、机器人控制和自动驾驶等领域有广泛应用。 这些算法深度学习中扮演着重要的角色,每个算法都有其适用的场景和特点。选择合适的算法取决于具体的问题和数据集。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值