科学家从脑电图中解读大脑的运动意图

点击上面"脑机接口社区"关注我们

更多技术干货第一时间送达

日本东京工业大学(TokyoInstitute of Technology),大阪大学(Osaka University)等机构的研究人员的合作开发了一种新技术,可以从脑电图(EEG)中解码人类的运动意图。之前的研究证明,大脑能够利用所谓的前向模型预测自我产生和想象动作的感觉结果(大脑有这样的能力),而本项研究就是基于该证明而进行的。该方法首次实现了受试者在96毫秒的刺激范围内,受试者在零训练情况下,对用户没有额外的认知负荷,单次测试解码精度接近90%。

脑机接口(BCI)研究的终极梦想是在机器和人脑之间建立一种高效的连接,从而使机器可以随意使用。例如,让一个截肢者只需想一想就可以使用连接到他的机器人手臂,就好像那是他自己的手臂一样。这类任务的一大挑战是,在最大限度地减少使用者努力的同时,从使用者的大脑活动中破译他们的运动意图。关于这方面的研究其实已经很多了,然而,这些研究要么需要对用户进行大量的训练,要么仅与一部分使用者良好地协作,或需要使用明显的刺激措施,给使用者带来额外的注意力和认知负担。在这项研究中,来自东京工业大学(Tokyo Institute of Technology)、法国国家科学研究中心(CNRS-France)、AIST和大阪大学(OsakaUniversity)的研究人员提出了一种新的运动意图译码哲学和技术,它克服了上面所提到的这些问题,同时提供了同样更好的译码性能。

之前研究的方法和他们提出的方法之间的根本区别在于解码的内容。之前所有的方法都是通过直接(如所谓的主动BCI系统)或间接(如被动BCI系统)解码用户想要做(意图)/想象的动作。在这里,研究人员建议通过将脑电图(EEG)与阈下感觉刺激器(subliminal sensorystimulator)结合使用进行解码,不过这里不是解码用户想要的/想象的运动,而是解码他想要的运动是否与使用刺激器发送给用户的感觉反馈相匹配。研究人员的所提出的方法是基于对所谓的大脑前向模型的大量研究。神经回路牵涉到预测自发运动的感觉结果。已知在前向模型预测与实际感觉信号之间的感觉预测误差对于我们的感觉运动能力是至关重要的-触觉感知,运动控制以及自我认知等。研究人员因此假设预测错误在脑电图中具有较大的特征,并且干扰预测误差(使用外部感觉刺激器)是解码运动意图的一种很有前途的方法。

图1 实验来测试这项新技术

如上图所示,研究人员设计了相关实验来测试这项新技术:研究人员建议与EEG并行使用一种感觉刺激器,并解码刺激是否与与使用者的运动意图相对应的感觉反馈相匹配。本实验采用电前庭刺激器(GVS)模拟轮椅转弯场景。B) 在EEG记录过程中,受试者被GVS电极固定。阈下GVS刺激会引起向左或向右转弯的感觉。C)实验时间表:在每个试验中,使用立体声扬声器和“高频”蜂鸣声,指示受试者坐在轮椅上想象向左或向右转弯。每次提示结束后2秒钟进行一次阈下GVS刺激,随机对应右转或左转。随后是“低频”蜂鸣声(停止提示)提示的3秒钟的休息时间。

研究人员所提出的方法在一个二进制模拟轮椅任务中得到了测试,在这个任务中,用户要么想要转动轮椅向左,要么想要转动轮椅向右。研究人员下使用电前庭刺激器向左或向右刺激使用者的前庭系统(因为这是转弯时的主要感觉反馈)。然后他们对预测错误的存在进行解码(即刺激方向是否与用户想象的方向匹配),因此,当已知刺激方向时,用户就可以想象出该方向。该程序在所有被测对象中,在96 ms的刺激内,均具有出色的单次解码解码精度(中值87.2%)。这些结果是通过零用户培训获得的,并且由于刺激是阈下的,因此对用户没有额外的认知负担。

图2 解码性能概括

上图为解码性能概括,解码时的不同受试者中值解码性能,为单个受试者想要旋转的方向。(即提示方向)时,整个对象的中值解码性能以红色和粉红色显示,而译码使用新提出的方法显示为黑色。每个时间点的数据代表使用参考点(“cue”代表红色数据,“GVS start”代表粉红色和黑色数据)和该时间点之间的时间段的数据进行解码的性能。箱形图边界代表第25和75个百分位数,而晶须代表不同受试者的数据范围。嵌入的直方图显示了140个(20个X7受试者)测试试验中受试者的整体解码性能,每个受试者数据以不同的颜色显示。

研究人员表示有望从根本上改变运动意图的解码方式。首先,因为该方法在没有用户训练的情况下保证了更好的解码精度,并且不会在用户身上引起额外的认知负担。此外,可以在少于100 ms的刺激内完成解码,这一事实凸显了其在实时解码中的用途。最后,该方法与其他利用ERP,ERD和ERN的方法不同,这表明它可以与当前方法并行使用以提高其准确性。

参考详情:

Utilizing sensory prediction errors for movement intention decoding: A new methodology

J. R. Wolpaw, N. Birbaumer, D. J.McFarland, G. Pfurtscheller, T. M. Vaughan, Brain computer interfaces for communication and control.Clin. Neurophysiol. 113, 767–791(2002).

A. Shakeel, M. S. Navid, M. N. Anwar, S.Mazhar, M. Jochumsen, K. Niazi, A review of techniques for detection of movementintention using movement-related cortical potentials. Comput. Math. MethodsMed. 2015, 346217 (2015).

G. R. Müller-Putz, A. Schwarz, J. Pereira,P. Ofner, From classic motor imagery to complex movement intention decoding: Thenoninvasive Graz-BCI approach. Prog. Brain Res. 228, 39–70 (2016).

G. Townsend, V. Platsko, Pushing theP300-based brain–computer interface beyond 100 bpm: Extending performanceguided constraints into the temporal domain. J. Neural. Eng. 13, 026024 (2016).

https://www.technologynetworks.com/neuroscience/news/scientists-decode-brains-movement-intentions-from-eeg-307198

编辑|邹思

文章来源于网络,仅用于学术交流,不用于商业行为

若有侵权及疑问,请后台留言,管理员即时删侵!

更多阅读

如何对单手和双手协同运动方向进行神经表征和解码?北理工研究团队给出了相关方案

"脑机接口"方向招聘启事(特别研究助理/博士后)

基于深度学习的脑电图识别 综述篇(三)模型分析

【基于深度学习的脑电图识别】数据集篇:脑电信号自动判读的大数据

脑机接口拼写器是否真的安全?华中科技大学研究团队对此做了相关研究

脑机接口和卷积神经网络的初学指南(一)

脑电数据处理分析教程汇总(eeglab, mne-python)

P300脑机接口及数据集处理

快速入门脑机接口:BCI基础(一)

如何快速找到脑机接口社区的历史文章?

脑机接口BCI学习交流QQ群:515148456

微信群请扫码添加,Rose拉你进群

(请务必填写备注,eg. 姓名+单位+专业/领域/行业)

长按关注我们

欢迎点个在看鼓励一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值