上海交大情感脑电数据集(SEED)简介

SEED数据集由15位受试者在观看精心挑选以引发不同情感的电影片段时产生的脑电信号组成。该数据集分为预处理后的EEG数据和提取的特征两部分,适用于情感分类研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

e9389ca452ee5bcc78aa815934e2dc7b.gif

SJTU 情感脑电数据集(SEED)是由BCMI实验室提供的EEG数据集的集合,该实验室由路宝良教授领导 。

数据集官网以及获取地址:

http://bcmi.sjtu.edu.cn/~seed

SEED数据集介绍


da8b06deb5c4a2afc07e683b09c792ab.png

SEED数据集包含对象观看电影剪辑时的脑电信号。仔细选择影片剪辑,以引起不同类型的情感,包括积极(positive),消极(negative)和中性(neutral)的情感。

1、刺激与实验

从材料库(6部电影)中选择了15个中国电影剪辑(正面,中性和负面情绪)作为实验中使用的刺激。胶片夹的选择标准如下:

  1. 整个实验的时间不应太长,以免会使受试者感到疲劳;

  2. 影片应理解无须说明;

  3. 视频应引起一种期望的目标情感。每个影片剪辑的持续时间约为4分钟。


每个影片剪辑都经过精心编辑,以产生连贯的情感,并最大化情感含义。实验中使用的影片剪辑的详细信息如下:earthquake=aftershock

f2d524bd8c9ff9cfd5a7e2abf3696e11.png

619e35436aad59d35ddc0c3b2adff3cd.png

每次实验需要把15个电影剪辑都观看完,因此每次实验总共有15个试验trials。在一个剪辑中,每个剪辑之前有**5s提示,自我评估为45s,休息后为15s。**安排放映的顺序,使针对同一情感的两个影片剪辑不会连续显示。对于反馈,要求参与者在观看完每个剪辑后立即完成问卷,以报告他们对每个剪辑的情感反应。详细协议如下所示:

d274fa66454ba7ee355a9d32f3e45167.png

2、受试者(subjects)

15名中国受试者(男性7名,女性8名;MEAN(平均年龄):23.27,STD(标准差):2.37)参加了实验。为了保护个人隐私,我们将其名称隐藏起来,并用1到15之间的数字表示每个主题。

3、数据集摘要

SEED数据集包含两个部分:

167826cd3a204a87cb0eeb3099694857.png

3.1 “ Preprocessed_EEG”文件

包含Matlab中的EEG数据的降采样,预处理和分段版本(.mat文件)。数据下采样到200Hz。应用了0-75Hz的带通频率滤波器。我们提取了与每部电影的时长相对应的脑电图片段。总共有45个.mat(Matlab)文件,每个实验一个,每个受试者进行实验三次,间隔约一周15人X3次=45。每个主题文件包含15个数组,每个数组包含一项实验中15个试验的分段预处理脑电数据(eeg_1〜eeg_15,通道62×数据(电影时长和频率有关))。数组名称标签包label.mat含相应的情感标签的标签(-1表示否定,0表示中立,+ 1表示积极)。通道的详细顺序包含在数据集中。根据国际10-20系统的62个通道的EEG上限如下所示:

119f1605a34e54eb6c9bbd0f00ab3711.png

通道顺序:从上至下,从左至右。
FP1 FPZ FP2 AF3 AF4 F7 F5 F3 F1 FZ F2 F4 F6 F8 FT7 FC5 FC3 FC1 FCZ FC2 FC4 FC6 FT8 T7 C5 C3 C1 CZ C2 C4 C6 T8 TP7 CP5 CP3 CP1 CPZ CP2 CP4 CP6 TP8 P7 P5 P3 P1 PZ P2 P4 P6 P8 PO7 PO5 PO3 POZ PO4 PO6 PO8 CB1 O1 OZ O2 CB2

507384d245dff0e18eb7bee74cf7f962.png

3.2 “ Extracted_Features”文件夹

有一些文件包含EEG信号的提取的差分熵(DE)特征,这在[1]中首次提出。这些数据非常适合那些想要快速测试分类方法而无需处理原始EEG数据的人。文件格式与Data_prepocessed相同。我们还计算了差分不对称(DASM)和有理不对称(RASM)特征,作为27对半球形不对称电极的DE特征之间的差异和比率。使用传统的移动平均和线性动态系统(LDS)方法,所有功能都更加平滑。有关特征提取和特征平滑的更多详细信息,请参阅[1]和[2]。

参考文章:
[1] Ruo-Nan Duan, Jia-Yi Zhu and Bao-Liang Lu, Differential Entropy Feature for EEG-based Emotion Classification, Proc. of the 6th International IEEE EMBS Conference on Neural Engineering (NER). 2013: 81-84.
[2] Wei-Long Zheng, and Bao-Liang Lu, Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks, accepted by IEEE Transactions on Autonomous Mental Development (IEEE TAMD) 7(3): 162-175, 2015.

2550f2cccce3b7789f93852f5046db3b.png

作者:CSDN博主Hubert_Alex 授权分享

不用于商业行为,转载请联系后台

若有侵权,请后台留言,管理员即时删侵!

11681d2c0653fe1f4ed1f7da5a1ca9d6.png

更多阅读

瞭望丨中国科学院院士 海南大学校长 骆清铭:“看见”大脑

超31亿! “脑科学与类脑研究”重大项目2021年度申报指南

类脑神经界面研究有新进展

利用脑电图(EEG)检测自闭症儿童大脑微状态的改变

TensorFlow处理运动想象分类任务

植入式神经电极阵列器件与材料的研究进展

重磅!浙江大学发布《重大领域交叉前沿方向2021》报告

脑电信号预处理--去趋势化(Detrended fluctuation analysis)

06af816ce540a2fb63167b7e16bf7573.png

12f55f4238c2870e370274de3f8dfdb6.png

你的每一次在看,我都很在意!

### SEED-IV 数据集概述 SEED-IV 数据集由上海交通大学仿计算与机器智能研究中心提供,主要用于情感分析研究。该数据集中包含了通过EEG设备采集的数据以及相应的标签信息[^2]。 #### EEG信号预处理 为了提高分类性能并减少噪声干扰,在实际应用之前通常会对原始EEG信号执行一系列预处理操作。这些步骤可能包括但不限于: - **滤波**:采用带通滤波器去除不需要频率范围内的噪音。 - **降采样**:降低数据量的同时保持有效信息不变。 - **伪迹移除**:利用独立分量分析(ICA)等技术消除肌、眼动等因素引起的伪影。 ```python from scipy.signal import butter, filtfilt def apply_bandpass_filter(eeg_data, lowcut=0.5, highcut=40., fs=200): nyquist = 0.5 * fs b, a = butter(5, [lowcut / nyquist, highcut / nyquist], btype='band') y = filtfilt(b, a, eeg_data) return y ``` #### 特征提取方法 对于经过初步清理后的EEG序列,可以考虑多种方式来进行特征工程,比如基于频域变换的方法如傅里叶变化或小波分解;也可以尝试时频联合表示法如短时傅立叶转换(STFT),希尔伯特黄变换(HHT)等等。此外还有专门针对信号设计的一些统计指标作为补充说明。 #### 实验设置与评估标准 实验过程中会邀请参与者观看特定类型的刺激材料(例如影片段),期间同步记录其大活动情况形成样本库。之后再根据不同任务需求选取合适的模型架构开展训练验证工作,并最终依据准确率、召回率等相关评价体系衡量整体效果的好坏。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值