脑机接口(BCI)重要内容:BCI相关术语(一)

2a9a3841b8e9d7f81700ecbde754e22a.jpeg

-机接口(BCI)相关术语

连载(一)

昆明理工大学伏云发教授团队

【导读】为了方便脑机接口(Brain-computer interface,BCI)初学者、中级和高级研发者查阅或精准理解BCI相关术语,本章列出了BCI相关术语。第一节为前言,第2节列出了与BCI直接相关的术语,第3节列出了与BCI紧密相关的术语,后面的几节分别列出了在BCI文献中使用的若干术语,包括BCI用户相关术语、实用BCI相关术语、用于BCI的脑神经电磁信号和脑组织血氧水平记录相关术语、BCI相关脑结构与功能术语,以及BCI相关的其他术语。这种列举方式是为了整理BCI相关术语的方便,不是绝对的,也不是标准,仅供参考,目的是为了方便查询或理解BCI相关术语。

目录

f085f6abbc1abfd45bcf25e6e5978db7.jpegb75f5621ccb5821011a6c5e903fb68c6.jpeg6b48a44b474559dd4b963935c95a9e5a.jpeg6f4380e587e3c4d53b5bd6b58f04b151.jpeg

左右滑动查看目录

46d5c3955fac713072c846482c5b99cb.png

第1节  前言

为了方便脑机接口(Brain-computer interface,BCI)初学者、中级和高级研发者查阅或精准理解BCI相关术语,本章列出了BCI相关术语。第一节为前言,第2节列出了与BCI直接相关的术语,第3节列出了与BCI紧密相关的术语,后面的几节分别列出了在BCI文献中使用的若干术语,包括BCI用户相关术语、实用BCI相关术语、用于BCI的脑神经电磁信号和脑组织血氧水平记录相关术语、BCI相关脑结构与功能术语,以及BCI相关的其他术语。这种列举方式是为了整理BCI相关术语的方便,不是绝对的,也不是标准,仅供参考,目的是为了方便查询或理解BCI相关术语。

3d28b864989f43ceb4a56b816868e92b.png

第2节  BCI直接相关术语

本节挑选出与BCI直接相关的术语,包括脑-计算机接口(Brain-computer interface,BCI)、脑-机器接口(Brain-machine interface, BMI)、脑-计算机交互(Brain-computer interaction, BCI)、脑机融合、脑(Brain)或中枢神经系统(CNS)、计算机(Computer)、BCI用户、脑信号采集、BCI范式、BCI神经编码、BCI神经解码、神经反馈(Neurofeedback,NF)、感觉运动假说(Sensorimotor Hypothesis)、BCI跨学科性(Interdisciplinary Nature of BCI)以及BCI系统中的两个自适应控制器(CNS和BCI)。

2.1 脑-计算机接口(BCI)

脑-计算机接口(BCI)这一术语是20世纪70年代(1973年)由Jacques Vidal首次使用的,他非常广泛地应用这个术语,用来描述任何能够产生关于脑功能详细信息的基于计算机的系统[1]。

在1991年的一份原始研究报告中,BCI被定义为科学术语[2]。自1990年代以来,BCI已明确被定义为大脑与计算机系统之间的直接通信和控制技术。

2012年正式确定的BCI定义为:BCI是一个记录中枢神经系统(Central nervous system,CNS)活动并将其转换为人工输出的系统,可以替代、恢复、增强、补充或改善CNS的自然输出,它改变了CNS与身体其他部位或外部世界的交互方式[3, 4-10]。与CNS的自然输出(包括肌肉活动和激素)相比,BCI为CNS提供了既不是神经肌肉也不是激素的新颖输出[4]。

在上述BCI定义的基础上[3],文献[11]给出如下更为清晰的BCI定义。

当用户主动执行特定的心理任务或接收特定的外部刺激时,由特定的传感器技术获取中枢神经系统(用户的大脑)产生的信号,把表征或编码用户意图(特定的心理任务或外部刺激)的脑信号特征直接转化为与以计算机为核心的机器系统交互的通信和控制命令,并把交互的结果在线反馈(包括神经反馈)给用户,以主动调节其心理活动策略,为用户提供新型的人机交互方式。文献[11]给出了BCI的清晰定义和明确范畴。

2.2 脑-机器接口(BMI)

脑-机器接口(BMI)和BCI本质上是同义词,但使用外部记录信号(如EEG和fNIRS等)的系统通常被称为BCI,而使用植入传感器记录的信号的系统通常被称为BMI[4]。BMI系统的例子如在大脑运动皮层植入电极采集信号以控制机械臂[12]等,而BCI系统的例子如基于EEG控制轮椅[10]和基于EEG控制虚拟现实游戏[14]等。

此外,BMI也通常指利用大脑信号直接控制机器,包括机械臂、电动轮椅甚至更复杂的装置,其中的“machine”通常与更广泛的应用相关。然而,在BMI系统中要求“machine”能够有效的分析复杂的脑信号,通常“machine”是一种具有计算机功能的机器系统,或者是一种以计算机为核心的机器,如果机器没有强大的计算机功能,可能很难分析中枢神经系统产生的脑信号[11]。

在中文文献中,BMI与BCI通常均简称为脑-机接口或脑机接口。

2.3 脑-计算机交互(BCI)

有学者偏向采用脑-计算机交互(BCI)术语,简称脑-机交互,并指出其与Brain-computer interface(BCI)术语之间的差别,前者强调双向的“interaction”,而后者强调二者的“interface”。但另外一些学者则认为二者本质上没有区别,“interface”也包含了“interaction”[11]。

2.4 脑机融合

脑机交互的一个发展趋势是,从脑机协同发展到脑机智能,再发展到脑机融合。

2.4.1 脑机协同(Brain-computer/machine co-adaptation, BCCA/BMCA)

BCCA/BMCA是指BCI/BMI系统中人脑与计算机/机器设备在交互过程中相互适应与优化的过程。BCCA/BMCA涉及用户的神经适应与BCI/BMI系统的算法优化,使系统能够逐渐学习用户的脑信号特征,同时用户的神经活动也逐渐适应系统的响应。这个过程旨在提高BCI的性能和用户体验。

BCCA/BMCA中的关键概念包括:

1)BCI用户适应。用户通过反复使用,调整其脑信号以更好地控制BCI系统。

2)BCI/BMI系统适应。BCI/BMI系统通过机器学习算法实时调整,以适应用户不断变化的脑信号。

3)BCI用户与BCI/BMI系统双向学习。强调用户与系统的共同适应或进化,使其配合更加流畅。

BCCA/BMCA相关概念、原理和方法可参考文献[36] [225-226]。

2.4.2 脑机智能(Brain-computer/machine Intelligence, BCI/BMI)

脑机智能(BCI/BMI)是指通过脑机接口技术实现人脑与计算机/机器智能系统的深度融合和协同工作。脑机智能(BCI/BMI)不仅包括传统的脑信号解码和控制,还涉及智能算法对脑信号的深层理解与反馈调整,使得系统能够以更智能的方式回应或满足用户的需求。

脑机智能(BCI/BMI)中的关键概念包括:

1)智能交互。系统通过理解用户的意图和状态,做出更为智能的响应。

2)机器学习与人工智能。在脑机智能(BCI/BMI)中,算法能够通过学习用户行为模式和脑信号特征,逐渐提高系统的表现和适应性。

3)应用场景。脑机智能(BCI/BMI)技术在康复、增强现实、虚拟现实等领域具有潜在的重要应用,旨在提升人机交互的效率与效果。

脑机智能(BCI/BMI)相关概念、原理和方法可参考文献[74] [227]。

脑机接口智能或脑机交互智能,简称脑机智能。

2.4.3 脑机融合(Brain-computer/machine Fusion, BCF/BMF)

BCF/BMF是指通过脑机接口技术实现人脑与计算机/机器系统的深度融合,使得两者在功能上相互依存和补充,以完成复杂任务。BCF/BMF不仅包括脑信号传递和解码,还涉及信息加工、决策和执行的整体协同,使得人脑和计算机/机器能够共同执行超出单方面能力的任务。

BCF/BMF中的关键概念包括:

1)功能整合。人脑与计算机/机器系统在信息处理和任务执行上实现无缝协同。

2)共生系统。通过深度融合,人脑和计算机/机器系统共同适应、学习和进化,形成一个具有智能特征的共生系统。

3)应用领域。BCF/BMF在医疗康复、智能控制、增强人类能力等领域具有潜在的重要应用,通过融合增强系统的复杂性和效率。

BCF/BMF相关概念、原理和方法可参考文献[228-229]。此外,还有一些脑机接口研究组或研究者采用“智能脑机接口/交互(Intelligent brain-computer interface/interaction,IBCI)”的术语。

2.5 脑(Brain)或中枢神经系统(CNS)

中枢神经系统(CNS)包括大脑(Brain)和脊髓(spinal cord), BCI定义中的CNS通常是指大脑,而不包括脊髓[11]。BCI利用中枢神经系统产生的脑信号作为通信和控制的主要信号源。BCI研发主要涉及从负责计划、控制和执行自愿运动的运动皮层(Motor Cortex)、与感知相关的躯体感觉皮层(Somatosensory Cortex)、与视觉处理相关的视觉皮层(Visual Cortex)、与认知功能和决策相关的前额叶皮层(Prefrontal Cortex)以及与听觉和语言处理相关的颞叶(Temporal Lobe)等脑区记录并解码脑信号。特别值得注意的是,运动皮层包括初级运动皮层(Primary Motor Cortex, M1)、辅助运动区(Supplementary Motor Area, SMA)、前运动区(Premotor Cortex)和后顶叶(Posterior Parietal Cortex)[15-18]。

人脑的功能区如图1所示,包括躯体感觉联合区(Somatic sensory association area)、初级感觉皮层(Primary sensory cortex)/中央后回(Postcentral gyrus)、 初级运动皮层(Primary motor cortex)/中央前回(Precentral gyrus)、躯体运动联合区(Somatic motor association area)/运动前皮质(Premotor cortex) 、前额皮质(Prefrontal cortex)、 布洛卡区(产生语言)(Broca’s area)、 听觉联合区(Auditory association area)、 听觉皮质(Auditory cortex)、韦尼克区(理解语言)(Wernicke’s area)、 视觉皮质(Visual cortex)和视觉联合区(Visual association area)。

2930c0666a10c4e286797a281f9cba70.png

图1人脑的功能区域(右半球视图)。虚线显示的区域通常是左半球占优的;

2.6 计算机(Computer)

BCI这一术语中的计算机(Computer)已获得BCI研发界的广泛认可和接受,BCI系统包含以计算机为核心的机器系统[11]。计算机具有强大的计算能力(处理速度快、多任务处理和精确度高)和存储能力(大容量存储、快速存取和数据持久性),能够完成解析复杂脑信号等任务[11]。

现代计算机是一种电子设备,由硬件(如中央处理器、内存、存储设备和输入/输出设备等)和软件组件(如操作系统、应用软件和实用程序等)组合来实现数据存储、处理、传输以及根据预设指令完成任务,具有学习和适应能力的计算机算法是人工智能和机器学习(包括深度学习)的核心。现代计算机种类繁多,小到便携式个人计算机和智能手机等微型计算机,大到用于特殊任务的超级计算机。现代计算机在各种应用中不可或缺,包括数据处理、通信和娱乐等,特别是在BCI中处理复杂的脑信号。

2.7 BCI用户

BCI用户是BCI的使用者,包括BCI研发时的受试者/被试(Subject)以及BCI产品的最终使用者等。已明确将潜在需要BCI 的患者作为该技术的最终用户(BCI 一级用户)[19][30]。为了提高BCI 技术在临床上的可用性,BCI 研发应采用以用户为中心的设计,把BCI 最终用户作为开发过程的一部分,了解BCI 二级用户(包括非专业用户和专业用户,非专业用户如家庭、护理人员、与最终用户互动的人员,专业用户如辅助技术(Assistive technology,AT) 专业人士、研究人员和制造商、治疗师、医生)和三级用户(其他参与方或权益相关者,如保险、公共卫生系统、中小企业)的需求[20][30],确保临床最终用户的需求得到倾听、理解、回应和满足。

BCI用户的脑是BCI系统的核心组件,其产生的脑信号是BCI实现人工输出,与外部设备通信和控制的主要信号源。因此,BCI用户是BCI系统的一部分,成功的在线BCI操作需要两个自适应控制器的有效交互,其中一个自适应控制器或系统是用户的大脑(中枢神经系统),另一个自适应控制器或系统是BCI算法(脑信号处理和解码算法)[4] [6] [11] [21-24] [30]。

2.8 脑信号采集

BCI可以从不同的大脑区域采集脑信号,例如从运动皮层、感觉皮层、视觉皮层、前额叶皮层以及颞叶等记录。BCI可以采用不同的方式采集大脑活动产生的电磁生理信号(Electromagnetic physiological signals)和血液动力学响应(Hemodynamic Response),如表1所示。通常,研发的BCI系统采用表XX中一种特定的脑信号采集方式,不同的脑信号采集方式BCI系统的性能也有所不同。

表1不同的脑信号采集方式

8afe59ad45739ad82a33450cd481274e.png

2.9 BCI范式

BCI范式是指在特定的脑信号采集技术下,由BCI研发者精心选择/设计的一组特定的心理任务或外部刺激,用于表示用户的意图[25-26]。如果用户要成功操控BCI,必须按照BCI范式主动执行指定的心理任务或选择性接收指定的外部刺激,以实现人机交互,否则难以成功操控BCI。换句话说,BCI不能识别用户的任意意图[11][27]。

特别需要强调的是在BCI系统中,用户不是被动接收外部刺激,而是主动选择需要的外部刺激,以实现自己的意图,这与神经调控中患者或用户被动接收神经刺激不同。

2.10 BCI神经编码

BCI神经编码是指在特定的BCI范式下,把用户不同的意图“写入”或编码进中枢神经信号中,由具有可分性的脑信号特征表征,这种具有编码意图的脑信号可由特定的脑成像技术检测到,最后可由BCI神经解码算法识别用户意图[25-26]。

2.11 BCI神经解码

BCI神经解码是指对BCI用户执行BCI范式所指定的心理任务或选择外部刺激(用户意图)时采集的脑信号进行预处理,然后提取由BCI神经编码确定的表征用户意图的脑信号特征,并将特征转化为与外部设备通信或控制的指令。

2.12 神经反馈(NF)

神经反馈(NF)是生物反馈训练(Biofeedback Training)的一种形式,它采用EEG或“脑波”作为控制反馈的信号。EEG传感器置于被试头皮上以记录EEG信号,利用计算机和软件通过人-机接口将EEG转换为反馈信号。通过使用视觉、听觉(声音)或触觉反馈在大脑中产生学习过程,其主要用途是通过增加α波或相关节律来改善大脑放松程度,也可以通过改善中枢神经系统调节专注-放松周期和大脑连通性的能力,从而获得各种额外益处[28-29]。

NF包括中枢神经反馈和非中枢神经反馈。从采用的信号来看,中枢神经反馈分为基于EEG的神经反馈(EEG-NF)、基于fMRI的神经反馈(fMRI-NF)、基于fNIRS的神经反馈(fNIRS-NF)、基于神经元脉冲发放(Spikes)的神经反馈(Spikes-NF)等[28-29]。

BCI中的在线反馈通常是中枢神经反馈,特别是基于EEG的NF。虽然基于EEG的NF早于BCI出现,但EEG-NF本质上是一种BCI,即BCI的一种形式。这类BCI可以广泛应用于焦虑症、抑郁症、注意力缺陷障碍/注意力缺陷多动障碍(ADD/ADHD)、创伤后应激障碍(PTSD)、酗酒/成瘾及孤独症谱系障碍(包括阿斯伯格综合征)、学习障碍、阅读障碍和癫痫等疾病的治疗[28]。

从BCI系统的构成来看,NF是BCI的关键或必不可少的组件,它使BCI成为一个双向闭环系统,通过反馈把通信或控制结果反馈给BCI用户,以便其主动调节心理活动策略或选择合适的外部刺激,获得稳定、准确和适时的性能。需要特别说明的是,在BCI系统中,用户不是被动接受反馈[11]。

2.13 感觉运动假说

感觉运动假说是中枢神经系统(CNS)功能的一个核心假设,认为大脑的主要任务是将感觉输入(sensory input)转化为运动输出(motor output)。这个假说的主要内容包括以下两个方面:

1)感觉与运动的耦合。感觉运动假说指出,感觉信息和运动行为之间存在紧密的联系。感觉输入(如视觉、听觉和触觉等)通过神经系统处理,最终以运动输出的形式表现出来。大脑通过感知外界环境来指导身体的运动。

2)中枢神经系统的调控。中枢神经系统通过一系列复杂的神经网络,将感知信息转换为适当的运动反应。这一过程涉及多个大脑区域的协作,包括感觉皮层、运动皮层和相关的皮层下结构。

这个假说的主要意义包括以下两个方面:

1)理解神经系统功能。感觉运动假说有助于理解中枢神经系统如何处理信息,并如何通过感觉与运动之间的反馈环路进行调控。这一假说是神经科学、心理学和运动控制理论的基础之一。

2)指导临床应用。感觉运动假说在康复医学和神经病学中具有重要意义,尤其是对于理解和治疗运动障碍、感觉缺损等神经系统疾病。

感觉运动假说与BCI的关系主要体现如下:

1)信号解码。BCI系统的核心任务是将采集的大脑神经信号解码为外部设备的控制信号,这一过程正是基于感觉运动假说。BCI系统利用感觉运动环路的原理,解码大脑对特定感觉或运动意图的神经活动,从而实现对计算机、机械臂等外部设备的控制。

2)感觉反馈与闭环控制。现代BCI系统越来越多地采用感觉反馈机制,将外部设备的状态反馈给用户,使得用户能够通过感觉-运动环路实现更加精确的控制。这种闭环控制的理念源于感觉运动假说,进一步增强了BCI系统的效率和用户体验。文献[182] [280] [290]中提供了有关感觉运动假说的相关信息。

2.14 BCI跨学科性

BCI跨学科性是BCI技术的研究和开发涉及多个学科领域的交叉和协同工作。BCI的跨学科性体现在以下几个方面。

1)神经科学。研究大脑信号的产生、传输及其功能关系,理解大脑活动的神经基础。

2)工程学。设计和开发硬件设备,如电极、放大器和信号处理器,用于记录和处理脑信号。

3)计算机科学。开发算法和软件,用于分析脑信号、模式识别和实现实时反馈控制。

4)心理学。研究用户在使用BCI系统时的认知和行为反应,优化用户体验。

5)生物医学。研究BCI系统对人体健康的影响,确保系统的安全性和有效性。

6)伦理学。探讨BCI技术的伦理问题,如隐私、伦理责任和社会影响等。

BCI跨学科性的重要性在于它需要不同领域的专家共同合作,才能很好地解决涉及人脑信号获取、处理、解码和应用的复杂问题,从而推动BCI技术的发展和应用。跨学科的主要方法在于整合来自不同领域的知识、技术和方法,以解决复杂的研究问题或实现创新。例如,可以通过以下几种途径实现跨学科协作。

1)跨学科团队合作。组建由神经科学家、工程师、计算机科学家、心理学家、医学专家等不同领域的专家组成的团队,共同合作解决BCI研发中的问题。通过不同学科的协同作用,优化BCI系统的设计和功能。

2)交叉学科教育与培训。开设跨学科课程,培养具有多学科背景的专业人才,使其掌握神经科学、信号处理、计算机编程和人机交互等相关知识。通过多学科教育,提升研究人员的跨领域思维和问题解决能力。

3)跨学科研究方法的整合。将不同学科的研究方法结合在一起,例如结合神经影像技术与机器学习方法,以更好地理解大脑信号并研发有效的BCI系统。利用跨学科的工具和技术(如fMRI、EEG和深度学习算法等),增强BCI研究的深度和广度。

4)跨学科的学术交流。组织跨学科的学术会议和研讨会,促进不同领域的研究人员之间的交流和合作,分享最新的研究成果和技术进展,推动BCI领域的发展。

5)跨学科的研究项目与资金支持。申请和开展跨学科的研究项目,获得来自不同学科的研究经费支持,以促进BCI技术的创新与应用。推动学术界与产业界的合作,利用跨学科的研究成果加速BCI技术的转化和推广。

文献[36] [280] [342]中提供了BCI跨学科行的相关信息。

2.15 系统中的两个自适应控制器(CNS和BCI)

有效的BCI输出取决于CNS和BCI的适应性,重要的是要认识到,成功使用BCI需要两个自适应控制器(CNS和BCI)之间的有效交互。实现CNS适应和并发BCI适应之间的有效交互是 BCI研究最困难的任务之一[24] [312]。

0a021a6c923762ea36bb94ab418f64c1.png

仅用于学术分享,若侵权请留言,即时删侵!

bc5887b3089b38d1c60c78709ebdc5d5.png

   加入社群   

欢迎加入脑机接口社区交流群,

探讨脑机接口领域话题,实时跟踪脑机接口前沿。

加微信群:

添加微信:RoseBCI【备注:姓名+行业/专业】。

加QQ群:913607986

   欢迎来稿   

1.欢迎来稿。投稿咨询,请联系微信:RoseBCI

点击投稿:脑机接口社区学术新闻投稿指南

2.加入社区成为兼职创作者,请联系微信:RoseBCI

9beba39d23c7eabb54023a554c21039b.jpeg

e17ccf4d22b451011f46381520cc68cc.jpeg

185bb44a3299b5603740beaa09ad11e5.jpeg

一键三连「分享」、「点赞」和「在看」

不错过每一条脑机前沿进展

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑机接口社区

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值