解决一个回溯问题,实际上就是一个决策树的遍历过程。相应的只是需要思考3个问题:
- 路径:也就是已经做出的选择
- 选择列表:也就是你当前可以做的选择。
- 结束条件:到达决策树底层,无法再次继续选择的时候
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
/就把这个当成模板,然后是直接套用即可./
/做选择的时候应该防止重复选择将一些已经选择的屏蔽/
/使用引用的方式对应的数组的直接修改./
做选择
backtrack(路径, 选择列表) //这里是递归继续调用!
撤销选择
其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」,特别简单。思路都是说:使用一个存储路径列表的数组进行满足条件的时候开始存储路径!递归的时候都是去将对应的列表进行单一的依次选出来的方式完成选择逐步更新的。将路径加入到路径列表中,有一些题目是需要满足某种条件的时候才可以加入,有些题目则不用!然后在生成每一个路径的时候,对应的都是使用一个for循环将其中的每一个路径加入然后递归然后删除。
- 元素是全部都要选择,但是为了避免重复选择的时候则使用标记数组标记是否已经选择!
- 元素是当前次数中只需要选择其中的一部分的时候,则需要对应使用start的计数方式来依次递增的慢慢选择!
- 上面的两种情况在题目中慢慢体会!start参数可以用于排除其中的已经选择过的数字。