机器学习:Logistic回归

        假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作为回归。利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,依次进行分类。回归源于最佳拟合,表示要找到最佳拟合参数集。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法,其中包括基本的梯度上升算法和一个改进的随机梯度上升法

基于l回归和s回归函数的分类

        我们想要的函数应该是,能接受所有的输入然后预测出类别(01)。如海维塞德阶跃函数,或直接称为单位阶跃函数,但该函数的问题是在自变量为0附近不连续、不可微,该函数在跳跃点上从0瞬间跳跃到1,有时很难处理,而Sigmoid函数也有这样的性质,且在数学上更易处理。具体计算公式为:

 下图给出了Sigmoid函数在不同坐标尺度下的两条曲线图。当x为0时,Sigmoid函数值为0.5,随着x增大,对应的sigmoid值将逼近与1;而随着x减小,Sigmoid值将逼近于0。如果横坐标刻度足够大(第二张图),Sigmoid函数看起来很像一个阶跃函数。

 因此,为了实现Logistic回归分类器,我们可以在每个特征上都乘以一个回归系数,然后把所有的结果值相加,将这个总和代入Sigmoid函数中,进而得到一个范围在0~1之间的数值。任何大于0.5的数据被分入1类,小于0.5即被归入0类。所以,Logistic回归也可以被看成是一种概率估计。

基于最有方法的最佳回归系数确定

Sigmoid函数的输入记为z,则:

 其中向量x是分类器的输入数据,向量w ww也就是我们要找到的最佳系数,b为常数。代入Sigmoid函数中得到:

 该预测函数的值表示y=1的概率,所以有y=1和y=0的概率分别为:

 我们便可以输入数据代入z中再由Sigmoid函数映射到0~1之间,得到一个这样的数值之后就可以进行分类,大于0.5的分入1类,反之,分入0类。

梯度上升法

梯度上升法基于的思想是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。如果梯度记为▽,则函数f(x,y)的梯度由下式表示:

 

这个梯度意味着要沿x的方向移动\frac{\partial f(x,y)}{\partial x},沿y的方向移动\frac{\partial f(x,y)}{\partial y}。其中,函数f ( x , y ) f(x,y)f(x,y)必须要在待计算的点上有定义并且可微。如下图:

 上图中的梯度上升算法沿梯度方向移动了一步。可以看到,梯度算子总是指向函数值增长最快的方向。这里所说的是移动方向,而未提到移动量的大小。该量值称为步长,记作 α 。用向量来表示的话,梯度上升算法的迭代公式如下:

 Logistic回归分类器应用例子

准备一个简单的数据集。

 此数据集分为三列,可以将第一列数据看作x轴上的值,第二列数据看作y轴上的值。而最后一列数据即为分类标签。根据标签的不同,对这些点进行分类。

 Python实现

加载数据集并绘制出数据集散点图:

import random
import numpy as np
import matplotlib.pyplot as plt
from numpy import shape, ones, array


#函数说明:加载数据
def loadDataSet():
    dataMat = []                                                        #创建数据列表
    labelMat = []                                                        #创建标签列表
    fr = open('testSet.txt')                                            #打开文件
    for line in fr.readlines():                                            #逐行读取
        lineArr = line.strip().split()                                    #去回车,放入列表
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])        #添加数据
        labelMat.append(int(lineArr[2]))                                #添加标签
    fr.close()                                                            #关闭文件
    return dataMat, labelMat                                            #返回


#函数说明:绘制数据集散点图
def plotDataSet():
    dataMat, labelMat = loadDataSet()                                    #加载数据集
    dataArr = np.array(dataMat)                                            #转换成numpy的array数组
    n = np.shape(dataMat)[0]                                            #数据个数
    xcord1 = []; ycord1 = []                                            #正样本
    xcord2 = []; ycord2 = []                                            #负样本
    for i in range(n):                                                    #根据数据集标签进行分类
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])    #1为正样本
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])    #0为负样本
    fig = plt.figure()
    ax = fig.add_subplot(111)                                            #添加subplot
    ax.scatter(xcord1, ycord1, s = 20, c = 'red', marker = 's',alpha=.5)#绘制正样本
    ax.scatter(xcord2, ycord2, s = 20, c = 'green',alpha=.5)            #绘制负样本
    plt.title('DataSet')                                                #绘制title
    plt.xlabel('x'); plt.ylabel('y')                                    #绘制label
    plt.show()                                                            #显示

if __name__ == '__main__':
    plotDataSet()

结果如图:

 

假设Sigmoid函数的输入记为z,那么z=w0x0 + w1x1 + w2x2,即可将数据分割开。其中,x0为全是1的向量,x1为数据集的第一列数据,x2为数据集的第二列数据。这个方程未知的参数为w0,w1,w2,也就是我们需要求的回归系数(最优参数)。

使用梯度上升算法求出最佳参数:

#函数说明:sigmoid函数
def sigmoid(inX):
    return 1.0 / (1 + np.exp(-inX))


#函数说明:梯度上升算法
def gradAscent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)                                        #转换成numpy的mat
    labelMat = np.mat(classLabels).transpose()                            #转换成numpy的mat,并进行转置
    m, n = np.shape(dataMatrix)                                            #返回dataMatrix的大小。m为行数,n为列数。
    alpha = 0.001                                                        #移动步长,也就是学习速率,控制更新的幅度。
    maxCycles = 500                                                        #最大迭代次数
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)                                #梯度上升矢量化公式
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights.getA()                                                #将矩阵转换为数组,返回权重数组

if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()
    print(gradAscent(dataMat, labelMat))

结果如图:

可以得出最佳参数w0= 2.43287428,w1=-0.00746856 ,w2=-0.38158108

分析数据,画出决策边界:

#函数说明:绘制决策边界
def plotBestFit(weights):
    dataMat, labelMat = loadDataSet()                                    #加载数据集
    dataArr = np.array(dataMat)                                            #转换成numpy的array数组
    n = np.shape(dataMat)[0]                                            #数据个数
    xcord1 = []; ycord1 = []                                            #正样本
    xcord2 = []; ycord2 = []                                            #负样本
    for i in range(n):                                                    #根据数据集标签进行分类
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])    #1为正样本
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])    #0为负样本
    fig = plt.figure()
    ax = fig.add_subplot(111)                                            #添加subplot
    ax.scatter(xcord1, ycord1, s = 20, c = 'red', marker = 's',alpha=.5)#绘制正样本
    ax.scatter(xcord2, ycord2, s = 20, c = 'green',alpha=.5)            #绘制负样本
    x = np.arange(-3.0, 3.0, 0.1)
    y = (-weights[0] - weights[1] * x) / weights[2]
    ax.plot(x, y)
    plt.title('BestFit')                                                #绘制title
    plt.xlabel('X1'); plt.ylabel('X2')                                    #绘制label
    plt.show()

if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()
    weights = gradAscent(dataMat, labelMat)
    plotBestFit(weights)

结果如图:

 

从分类结果可以看出,分错的点只有个别几个,整体效果不错。

随机梯度上升算法:

#函数说明:随机梯度上升算法
def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights
if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()
    weights = stocGradAscent0(array(dataMat), labelMat)
    plotBestFit(weights)

结果如图:

 

可以看出,此次分错的点比上次还多,效果下降。

改进的梯度上升算法:

#函数说明:改进的随机梯度上升算法
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = np.shape(dataMatrix)                                                #返回dataMatrix的大小。m为行数,n为列数。
    weights = np.ones(n)                                                       #参数初始化
    for j in range(numIter):
        dataIndex = list(range(m))
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.01                                            #降低alpha的大小,每次减小1/(j+i)。
            randIndex = int(random.uniform(0,len(dataIndex)))                #随机选取样本
            h = sigmoid(sum(dataMatrix[randIndex]*weights))                    #选择随机选取的一个样本,计算h
            error = classLabels[randIndex] - h                                 #计算误差
            weights = weights + alpha * error * dataMatrix[randIndex]       #更新回归系数
            del(dataIndex[randIndex])                                         #删除已经使用的样本
    return weights                                                      #返回
if __name__ == '__main__':
    dataMat, labelMat = loadDataSet()
    weights = stocGradAscent1(array(dataMat), labelMat)
    plotBestFit(weights)

结果如图:

可以看出效果和梯度上升算法已经差不多了,并且用的计算量更少。

小结:

Logistic回归的一般过程

1.收集数据:采用任意方法收集数据
2.准备数据:由于需要进行距离计算,因此要求数据类型为数值型。另外,结构化数据格式则最佳。
3.分析数据:采用任意方法对数据进行分析。
4.训练算法:大部分时间将用于训练,训练的目的是为了找到最佳的分类回归系数。
5.测试算法:一旦训练步骤完成,分类将会很快。
6.使用算法:首先,我们需要输入一些数据,并将其转换成对应的结构化数值;接着,基于训练好的回归系数就可以对这些数值进行简单的回归计算,判定它们属于哪个类别;在这之后,我们就可以在输出的类别上做一些其他分析工作。 

Logistic.回归优缺点:

优点:计算代价不高,具有可解析性,易于实现。

缺点:容易欠拟合,分类精度可能不高。

适用数据类型:数值型和标称型数据。

        Logistic回归的目的是寻找一个非线性函数Sigmoid的最佳拟合参数,求解过程可由最优化算法来完成,一般采用梯度上升算法,此算法又可简化为随机梯度上升算法。 随机梯度上升算法与梯度上升算法的效果相当,但占更少的计算资源。此外,随梯度上升是一个在线算法,它可以在新数据到来时就完成参数更新,而不需要重新读取整个数据集来进行批处理运算。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值