hdoj 4408 Minimum Spanning Tree 求最小生成树的数目

/* 
 *算法引入: 
 *给定一个含有N个结点M条边的无向图,求它最小生成树的个数t(G); 
 * 
 *算法思想: 
 *抛开“最小”的限制不看,如果只要求求出所有生成树的个数,是可以利用Matrix-Tree定理解决的; 
 *Matrix-Tree定理此定理利用图的Kirchhoff矩阵,可以在O(N3)时间内求出生成树的个数; 
 * 
 *kruskal算法: 
 *将图G={V,E}中的所有边按照长度由小到大进行排序,等长的边可以按照任意顺序; 
 *初始化图G’为{V,Ø},从前向后扫描排序后的边,如果扫描到的边e在G’中连接了两个相异的连通块,则将它插入G’中; 
 *最后得到的图G’就是图G的最小生成树; 
 * 
 *由于kruskal按照任意顺序对等长的边进行排序,则应该将所有长度为L0的边的处理当作一个阶段来整体看待; 
 *令kruskal处理完这一个阶段后得到的图为G0,如果按照不同的顺序对等长的边进行排序,得到的G0也是不同; 
 *虽然G0可以随排序方式的不同而不同,但它们的连通性都是一样的,都和F0的连通性相同(F0表示插入所有长度为L0的边后形成的图); 
 * 
 *在kruskal算法中的任意时刻,并不需要关注G’的具体形态,而只要关注各个点的连通性如何(一般是用并查集表示); 
 *所以只要在扫描进行完第一阶段后点的连通性和F0相同,且是通过最小代价到达这一状态的,接下去都能找到最小生成树; 
 * 
 *经过上面的分析,可以看出第一个阶段和后面的工作是完全独立的; 
 *第一阶段需要完成的任务是使G0的连通性和F0一样,且只能使用最小的代价; 
 *计算出这一阶段的方案数,再乘上完成后续事情的方案数,就是最终答案; 
 * 
 *由于在第一个阶段中,选出的边数是一定的,所有边的长又都为L0; 
 *所以无论第一个阶段如何进行代价都是一样的,那么只需要计算方案数就行了; 
 *此时Matrix-Tree定理就可以派上用场了,只需对F0中的每一个连通块求生成树个数再相乘即可; 
 * 
 *Matrix-Tree定理: 
 *G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝对值; 
 *n-1阶主子式就是对于r(1≤r≤n),将C[G]的第r行,第r列同时去掉后得到的新矩阵,用Cr[G]表示; 
 * 
 *算法举例: 
 *HDU4408(Minimum Spanning Tree) 
 * 
 *题目地址: 
 *http://acm.hdu.edu.cn/showproblem.php?pid=4408 
 * 
 *题目大意: 
 *给定一个含有N个结点M条边的无向图,求它最小生成树的个数,所得结果对p取模; 
**/  
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<queue>
#include<algorithm>
#include<vector>
using namespace std;

const int N=111;
const int M=1111;

typedef long long ll;

struct Edges {
    int a, b, c;
    bool operator < (const Edges & x) const {
        return c < x.c;
    }
} edge[M];

int n, m;
int mod;
ll f[N], U[N], vist[N];//f,U都是并查集,U是每组边临时使用
ll G[N][N], C[N][N];//G顶点之间的关系,C为生成树计数用的Kirchhoff矩阵

vector<int>V[N];//记录每个连通分量

int Find(int x, ll f[]){
    if(x == f[x])
        return x;
    else
        return Find(f[x],f);
}

ll det(ll a[][N], int n)//生成树计数:Matrix-Tree定理
{
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
            a[i][j] %= mod;
    int ret = 1;
    for(int i = 1; i < n; i++) {
        for(int j = i+1; j < n; j++)
            while(a[j][i]) {
                int t = a[i][i] / a[j][i];
                for(int k = i; k < n; k++)
                    a[i][k] = (a[i][k] - a[j][k]*t) % mod;
                for(int k = i; k < n; k++)
                    swap(a[i][k],a[j][k]);
                ret = -ret;
            }
        if(a[i][i] == 0)
            return 0;
        ret = ret * a[i][i] % mod;
    }
    return (ret+mod) % mod;
}

void Solve() {
    sort(edge, edge+m);//按权值排序
    for(int i = 1; i <= n; i++) {//初始化并查集
        f[i] = i;
        vist[i] = 0;
    }
    ll Edge = -1;//记录相同的权值的边
    ll ans = 1;
    for(int k = 0; k <= m; k++) {
        if(edge[k].c != Edge || k == m) {//一组相等的边,即权值都为Edge的边加完
            for(int i = 1; i <= n; i++) {
                if(vist[i]) {
                    ll u = Find(i,U);
                    V[u].push_back(i);
                    vist[i] = 0;
                }
            }
            for(int i = 1; i <= n; i++) {//枚举每个连通分量
                if(V[i].size() > 1) {
                    for(int a = 1; a <= n; a++)
                        for(int b = 1; b <= n; b++)
                            C[a][b] = 0;
                    int len = V[i].size();
                    for(int a = 0; a < len; a++) //构建Kirchhoff矩阵C
                        for(int b = a+1; b < len; b++) {
                            int a1 = V[i][a];
                            int b1 = V[i][b];
                            C[b][a] -= G[a1][b1];
                            C[a][b] = C[b][a];
                            C[a][a] += G[a1][b1];//连通分量的度
                            C[b][b] += G[a1][b1];
                        }
                    ll ret = (ll)det(C,len);
                    ans = (ans*ret) % mod;
                    //对V中的每一个连通块求生成树个数再相乘
                    for(int a = 0; a < len; a++)
                        f[V[i][a]] = i;
                }
            }
            for(int i = 1; i <= n; i++) {
                U[i] = f[i] = Find(i,f);
                V[i].clear();
            }
            if(k == m)
                break;
            Edge = edge[k].c;
        }

        int a = edge[k].a;
        int b = edge[k].b;
        int a1 = Find(a,f);
        int b1 = Find(b,f);
        if(a1 == b1)
            continue;
        vist[a1] = vist[b1] = 1;
        U[Find(a1,U)] = Find(b1,U);//并查集操作
        G[a1][b1]++;
        G[b1][a1]++;
    }

    int flag = 0;
    for(int i = 2; i <= n && !flag; i++) {
        if(U[i] != U[i-1]) flag = 1;
    }
    if(m == 0) flag = 1;
    printf("%I64d\n", flag ? 0 : ans%mod);
}

int main() {
    while(~scanf("%d%d%d", &n, &m, &mod) && n+m+mod) {
        memset(G, 0, sizeof(G));
        for(int i = 1; i <= n; i++)
            V[i].clear();
        for(int i = 0; i < m; i++)
            scanf("%d%d%d",&edge[i].a,&edge[i].b,&edge[i].c);
        Solve();
    }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值