-
模型训练
网络模型构建好后,需要利用训练数据不断进行学习训练来降低loss 提高模型性能 使得最后得到的结果误差尽可能小,尽可能满足需要
一个成熟合格的深度学习训练流程要满足:
(1)在训练集上进行训练并在验证集上进行验证
(2)模型可以保留最优权重,并读取权重
(3)记录下训练集和验证集的精度,便于调参 -
构建验证集
训练过程是容易出现过拟合的,也就是模型过多的学习了数据比较细枝末节的特征,而不是该类的特征,即不具备普遍性的特征,此时模型就会出现过拟合现象
而在训练过程中要保证模型的改变不接触测试集数据,来防止对测试集数据出现过拟合现象。这时候就需要验证集来验证模型的精度 -
一般情况下,可在本地划分出一个验证集,进行本地验证。训练集、验证集和测试集作用如下:
训练集(Train Set):模型用于训练和调整模型参数
验证集(Validation Set):用来验证模型精度和调整超参数
测试集(Test Set):验证模型的泛化能力
因为训练集和验证集是分开的,所以模型在验证集上的精度在一定程度上可以反映模型的泛化能力。在划分验证集的时候,需要注意验证集的分布与测试集尽量保持一致,不然模型在验证集上的精度就失去了指导意义。
加载训练集
train_path = glob.glob(r'./dataset/mchar_train/*.png')
train_path.sort()
train_json = json.load(open('./dataset/mchar_train.json'))
train_lebel = [train_json[x]['label'] for x in train_json]
print(len(train_path),len(train_lebel))
train_loader = torch.utils.data.DataLoader(
SVHNDataset(train_path,train_lebel,
transforms.Compose([
transforms.Resize