[HAOI2008]硬币购物

这篇博客解析了牛客网的[HAOI2008]硬币购物问题,介绍了如何通过动态规划求解所有可能的组合,然后利用容斥原理避免重复计数,从而找到每次购物的付款方法数。作者分享了从贪心策略到正确解决方案的过程,并给出了详细的代码示例。
摘要由CSDN通过智能技术生成

牛客每日一题之[HAOI2008]硬币购物(2020/9/24)

题目

链接:https://ac.nowcoder.com/acm/problem/19974
来源:牛客网

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。
输入描述:
第一行c1,c2,c3,c4,tot
下面tot行d1,d2,d3,d4,s,其中di,s ≤ 100000,tot ≤ 1000
输出描述:
每次的方法数
示例1
输入
复制
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
输出
复制
4
27

思路

这个题我第一眼的思路是贪心,但是发现情况太多了,导致复杂度很高,无法实现,可能还是太菜了,之后的思路才是用动态规划,但是普通的背包dp复杂度会高达O(4stot),明显会超时,于是看了大神的题解,了解到了容斥,我们可以先用dp将所有情况求出来,也就是此时先忽视di的限制,代码如下

for(int i=0;i<4;i++){
        scanf("%d",&c[i]);
        for(int j=c[i];j<=MAX;j++){
            dp[j]+=dp[j-c[i]];
        }
    }

之后只用把不可能的情况排除就行了,之所以会有不存在的情况就是因为di的限制,当ci的数量达到di+1便舍去,但是此时,由于舍掉了4种di,导致会重复舍去,比如d2舍去d2+1之后的,也舍去了包括了d2和d3同时存在的情况,但是d3也会舍去这部分,于是用到了容斥,由于是通过所有情况反推,所以是奇减偶加,和容斥一般情况正好相反,上代码

代码

#include<cstdio>
#define MAX 100005
long long dp[MAX];
int c[4];
int d[4];
int main(){
    int tot,s,oneNum;
    long long all,ans;
    dp[0]=1;
    for(int i=0;i<4;i++){
        scanf("%d",&c[i]);
        for(int j=c[i];j<=MAX;j++){
            dp[j]+=dp[j-c[i]];
        }
    }
    scanf("%d",&tot);
    while(tot--){
        for(int i=0;i<4;i++){
            scanf("%d",&d[i]);
        }
        scanf("%d",&s);
        ans=dp[s];
        for(int i=1;i<1<<4;i++){
            all=oneNum=0;
            for(int j=0;j<4;j++){
                if((i>>j)&1){
                    oneNum^=1;
                    all+=(d[j]+1)*c[j];
                }
            }
            if(all<=s){
                if(oneNum){
                    ans-=dp[s-all];
                }
                else{
                    ans+=dp[s-all];
                }
            }
        }
        printf("%lld\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值