牛客每日一题之[HAOI2008]硬币购物(2020/9/24)
题目
链接:https://ac.nowcoder.com/acm/problem/19974
来源:牛客网
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。
输入描述:
第一行c1,c2,c3,c4,tot
下面tot行d1,d2,d3,d4,s,其中di,s ≤ 100000,tot ≤ 1000
输出描述:
每次的方法数
示例1
输入
复制
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900
输出
复制
4
27
思路
这个题我第一眼的思路是贪心,但是发现情况太多了,导致复杂度很高,无法实现,可能还是太菜了,之后的思路才是用动态规划,但是普通的背包dp复杂度会高达O(4stot),明显会超时,于是看了大神的题解,了解到了容斥,我们可以先用dp将所有情况求出来,也就是此时先忽视di的限制,代码如下
for(int i=0;i<4;i++){
scanf("%d",&c[i]);
for(int j=c[i];j<=MAX;j++){
dp[j]+=dp[j-c[i]];
}
}
之后只用把不可能的情况排除就行了,之所以会有不存在的情况就是因为di的限制,当ci的数量达到di+1便舍去,但是此时,由于舍掉了4种di,导致会重复舍去,比如d2舍去d2+1之后的,也舍去了包括了d2和d3同时存在的情况,但是d3也会舍去这部分,于是用到了容斥,由于是通过所有情况反推,所以是奇减偶加,和容斥一般情况正好相反,上代码
代码
#include<cstdio>
#define MAX 100005
long long dp[MAX];
int c[4];
int d[4];
int main(){
int tot,s,oneNum;
long long all,ans;
dp[0]=1;
for(int i=0;i<4;i++){
scanf("%d",&c[i]);
for(int j=c[i];j<=MAX;j++){
dp[j]+=dp[j-c[i]];
}
}
scanf("%d",&tot);
while(tot--){
for(int i=0;i<4;i++){
scanf("%d",&d[i]);
}
scanf("%d",&s);
ans=dp[s];
for(int i=1;i<1<<4;i++){
all=oneNum=0;
for(int j=0;j<4;j++){
if((i>>j)&1){
oneNum^=1;
all+=(d[j]+1)*c[j];
}
}
if(all<=s){
if(oneNum){
ans-=dp[s-all];
}
else{
ans+=dp[s-all];
}
}
}
printf("%lld\n",ans);
}
}