路灯最短距离

题目:一条长l的笔直的街道上有n个路灯,若这条街的起点为0,终点为l,第i个路灯坐标为ai ,每盏灯可以覆盖到的最远距离为d,为了照明需求,所有灯的灯光必须覆盖整条街,但是为了省电,要是这个d最小,请找到这个最小的d。

import java.util.*;

import java.text.DecimalFormat;
import java.math.BigDecimal;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();//灯的个数
int length=sc.nextInt();//路的长度
int[] location=new int[n];//灯的位置
for(int i=0;i<n;i++){
location[i]=sc.nextInt();
}
//关闭输入流
sc.close();
//将路灯的位置排序
Arrays.sort(location);
double max=location[0];//第一个位置到0坐标的距离
double temp=length-location[n-1];//最后一个灯到末尾的距离
if(temp>max){
max=temp;
}
for(int i=1;i<n;i++){
double stemp=(location[i]-location[i-1])/2;
if(stemp>max){
max=stemp;
}
}
        BigDecimal bigDecimal=new BigDecimal(max);
        System.out.println(bigDecimal.setScale(2));
}
}
class Path(object): def __init__(self,path,distancecost,timecost): self.__path = path self.__distancecost = distancecost self.__timecost = timecost #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, dprice, tprice): return Path(self.__path+[node],self.__distancecost + dprice,self.__timecost + tprice) #输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") print(f"最短路径距离(self.__distancecost:.0f)m") print(f"红绿路灯个数(self.__timecost:.0f)个") #获取路径总成本的只读属性 @property def dCost(self): return self.__distancecost @property def tCost(self): return self.__timecost class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') #通过递归生成所有可能的路径 def __generatePath(self, graph, path, end, results, distancecostIndex, timecostIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][distancecostIndex][timecostIndex]), end, results, distancecostIndex, timecostIndex) #搜索start到end之间时间或空间最短的路径,并输出 def __searchPath(self, start, end, distancecostIndex, timecostIndex): results = [] self.__generatePath(self.__graph, Path([start],0,0), end, results,distancecostIndex,timecostIndex) results.sort(key=lambda p: p.distanceCost) results.sort(key=lambda p: p.timeCost) print('The {} shortest path from '.format("spatially" if distancecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") print('The {} shortest path from '.format("spatially" if timecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") results[0].printPath() #调用__searchPath搜索start到end之间的空间最短的路径,并输出 def searchSpatialMinPath(self,start, end): self.__searchPath(start,end,0,0) #调用__searc 优化这个代码
06-07
这段代码中可以进行如下优化: 1. 将类属性的命名改为下划线开头的私有属性,避免外部直接修改属性值,可以使用@property装饰器来获取属性的值。 2. 可以将类的构造函数中的参数改为可选参数,避免在初始化时需要传入参数,可以在需要时再传入参数。 3. 在递归函数的参数中加入默认值,避免在调用递归函数时需要传入所有参数。 4. 可以使用f-string格式化输出语句,代码更加简洁易读。 5. 可以使用列表推导式对列表进行过滤。 6. 在搜索最短路径时可以使用heapq模块的堆排序来优化效率。 优化后的代码如下: ```python import heapq class Path(object): def __init__(self, path = [], distance_cost = 0, time_cost = 0): self._path = path self._distance_cost = distance_cost self._time_cost = time_cost def get_last_node(self): return self._path[-1] def is_last_node(self, node): return node == self.get_last_node() def add_node(self, node, d_price, t_price): return Path(self._path + [node], self._distance_cost + d_price, self._time_cost + t_price) def print_path(self): for n in self._path: print(n, end="->" if not self.is_last_node(n) else "\n") print(f"最短路径距离({self._distance_cost:.0f}m)") print(f"红绿路灯个数({self._time_cost:.0f})个") @property def d_cost(self): return self._distance_cost @property def t_cost(self): return self._time_cost class DirectedGraph(object): def __init__(self, d = {}): if isinstance(d, dict): self._graph = d else: self._graph = dict() print('Something went wrong!') def __generate_path(self, graph, path, end, results, distance_cost_index=0, time_cost_index=0): current = path.get_last_node() if current == end: results.append(path) else: for n in graph[current]: if n not in path._path: self.__generate_path(graph, path.add_node(n, self._graph[path.get_last_node()][n][distance_cost_index][time_cost_index]), end, results, distance_cost_index, time_cost_index) def __search_path(self, start, end, distance_cost_index=0, time_cost_index=0): results = [] self.__generate_path(self._graph, Path([start], 0, 0), end, results, distance_cost_index, time_cost_index) results = heapq.nsmallest(1, results, key=lambda p: (p.d_cost, p.t_cost)) print(f"The {'spatially' if distance_cost_index==0 else 'temporally'} shortest path from {start} to {end} is:") results[0].print_path() def search_spatial_min_path(self, start, end): self.__search_path(start, end, 0, 0) def search_temporal_min_path(self, start, end): self.__search_path(start, end, 1, 1) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值