Attention is all you need(Transformer)论文阅读笔记

本文深入解析Transformer模型,重点讨论多头自注意力机制、Masked Multi-Head self-Attention和Encoder-Decoder Attention,阐述如何利用注意力机制实现序列建模和转换任务的高效并行计算。
摘要由CSDN通过智能技术生成

一、背景

seq2seq模型(2014年):https://blog.csdn.net/zyk9916/article/details/118002934

Attention模型(2015年):https://blog.csdn.net/zyk9916/article/details/118498156

对于序列建模和转换问题,大量的研究都围绕以RNN为基础的encoder-decoder架构展开。

但是,RNN是一种时序模型,存在固有的顺序性。无论是在encoder还是decoder中,都需要获得上一个时刻的隐状态才能计算下一个时刻的隐状态。这严重阻碍了训练示例中的并行化。

本文提出了Transformer模型架构,它避免了递归和卷积,而是完全依赖于注意力机制来捕捉输入和输出之间的全局依赖关系。Transformer允许更大程度的并行化。

二、模型

Transformer模型遵循了之前的encoder-decoder架构。

在这里插入图片描述
2.1 模型总览

Encoder:Encoder由N = 6个相同层的堆叠组成。每个层包含两个子层:一是多头自注意力机制(Multi-Head self-Attention),二是前馈神经网络(Feed Forward)。每个子层后都追加一个残差连接和归一化(Add&Norm)操作。模型中的所有子层以及Embedding层均产生维度dmodel = 512的输出。

Decoder:Decoder同样由N = 6个相同层的堆叠组成。每个层包含三个字层:一是带mask操作的多头自注意力机制(Masked Multi-Head self-Attention),二是Encoder到Decoder的多头注意力机制(注意这里并不是自注意力机制)(Encoder-Decoder Multi-Head Attention),三是前馈神经网络(Feed Forward)。每个子层同样追加一个残差连接和归一化(Add&Norm)操作。

2.2 注意力机制

注意力机制是基于三种向量(或者矩阵):查询向量(Query,Q)、键向量(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值