Bidirectional Long Short-Term Memory Networks for Relation Classification(PACLIC 2015)论文阅读笔记

本文介绍了一种使用双向长短时记忆网络(BLSTM)进行关系分类的方法,通过结合多种特征如词嵌入、位置、词性、命名实体等,解决了RNN的梯度消失问题。实验表明,仅使用词嵌入的BLSTM模型就能达到SOTA,而添加更多特征则能进一步提升性能。
摘要由CSDN通过智能技术生成

一、背景

SVM(2010),MV-RNN(2012),CNN(2014),FCM(2014),CR-CNN(2015),DepNN(2015)。

理论上,RNN可以任意长度的序列进行建模。但由于梯度消失/梯度爆炸问题。实际上无法实现。LSTM引入门控机制,改进了RNN,从而获得了对长序列建模的能力。

本文提出了双向长短时记忆网络(BLSTM)来对包含所有单词完整、顺序信息的句子进行建模。同时,还使用从词汇资源(如WordNet)或NLP系统(如依赖解析器和命名实体识别器(NER)中获取的特征。在SemEval-2010上的实验结果表明,仅将单词嵌入作为输入特征的基于BLSTM的方法就可以达到最先进的性能,引入更多的特征可以进一步提高性能。

在这里插入图片描述
F:Forward
B:Backward
h:hidden
c:cell

二、模型

1.Initial Feature Extraction(初始特征提取)

word features
position features
POS features
NER features
hypernyms(WNSYN) features
DEP features
Relativ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值