pytorch中的softmax回归和CrossEntropy损失函数

本文介绍了在PyTorch中如何利用softmax和CrossEntropyLoss进行分类任务。通过结合torch.nn.LogSoftmax和torch.nn.NLLLoss,或者直接使用torch.nn.CrossEntropyLoss,实现损失计算。在使用CrossEntropyLoss时,注意模型最后一层不需要激活函数,并且真实类别标签应为LongTensor类型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用softmax求损失的过程中,需要经历以下几步:

1.应用softmax函数; 2.取对数; 3.计算损失

其中第1、2步可以使用torch.nn.LogSoftmax()完成,第3步可以使用torch.nn.NLLLoss完成

也可以使用torch.nn.CrossEntropyLoss一次性完成3步操作,构成一个完整的softmax分类器。(使用最多!!!)

CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduction=‘mean’)

在使用torch.nn.CrossEntropyLoss之前,最后一层不再需要激活函数(无需非线性变换)
在使用torch.nn.CrossEntropyLoss时,样本的真实类别Y应是一个LongTensor,值为各样本的类别标号。

torch.nn.CrossEntropyLoss使用举例:

import torch
import math
criterion = torch.nn.CrossEntropyLoss()

Y = torch.LongTensor([2,0,1])                   # 3个样本是真实标记分别为2,0,1
Y_pred1 = torch.Tensor([[0.1,0.2,0.9],
                        [1.1,0.1,0.2],
                        [0.2,2.1,0.1]])         # 注意这里没有经过激活函数(即softmax函数),而是直接扔进CrossEntropyLoss里
Y_pred2 =
<think>嗯,用户想知道怎么在PyTorch里正确配置CrossEntropyLossAdamW优化器。首先,我需要回忆一下这两个组件的用途常见参数。CrossEntropyLoss是用于分类任务的,尤其是多类分类,而AdamW是优化器的一种,相比Adam加入了权重衰减的正则化方法,防止过拟合。 首先,我应该先介绍CrossEntropyLoss。需要提到它的输入通常是模型的输出(未经softmax的logits)目标标签。参数方面,weight参数可以处理类别不平衡,ignore_index忽略某些类别,reduction决定如何汇总损失。用户可能关心这些参数的使用场景,比如当数据集中某些类别样本较少时,weight参数就很有用。 然后是AdamW优化器。要说明它Adam的不同,特别是权重衰减的处理方式。参数方面,lr是学习率,betas控制动量,eps防止除以零,weight_decay是正则化项。还要提到如何将不同的参数组设置不同的学习率,比如在迁移学习中,全连接层其他层可能需要不同的学习率配置。这时候可以用param_groups来分组参数,示例代码可能像optim.AdamW([{'params': base_params}, {'params': fc_params, 'lr': 1e-3}], lr=1e-4)。 接下来,用户可能需要一个完整的配置示例,展示如何同时使用CrossEntropyLossAdamW。比如定义一个模型,然后设置损失函数优化器,并在训练循环中使用它们。这时候需要确保在训练步骤中正确调用loss.backward()optimizer.step(),以及梯度清零的操作。 另外,用户可能对实际应用中的注意事项感兴趣,比如学习率调度梯度裁剪。这些虽然不是直接配置CrossEntropyLossAdamW的一部分,但通常一起使用。可以提到如何使用PyTorch的lr_scheduler模块来调整学习率,以及如何通过torch.nn.utils.clip_grad_norm_来防止梯度爆炸。 还要检查是否有相关的引用资料可以用上。比如引用[1]中提到了不同层使用不同优化器参数,这可以用来举例说明param_groups的设置。引用[4]中的训练循环示例也展示了优化器的使用,可以结合这部分内容。 最后,确保回答结构清晰,分点说明,代码示例正确,参数解释到位。可能用户的实际问题是如何处理多任务学习或迁移学习中的参数分组,所以需要强调param_groups的灵活配置。同时,要注意中文表达,避免术语错误,保持口语化但专业。</think>### PyTorchCrossEntropyLossAdamW的配置详解 #### 一、CrossEntropyLoss损失函数配置 PyTorch的$CrossEntropyLoss$是分类任务的核心组件,其特点如下: 1. **输入要求**:模型输出应为未归一化的$logits$(无需手动添加$softmax$层),目标为类别索引 ```python import torch.nn as nn loss_fn = nn.CrossEntropyLoss( weight=None, # 类别权重张量(处理样本不平衡) ignore_index=-100, # 忽略指定类别索引 reduction='mean' # 损失聚合方式('none'/'mean'/'sum') ) ``` 2. **典型应用场景**: ```python # 模型输出形状:[batch_size, num_classes] outputs = model(inputs) # 目标形状:[batch_size] loss = loss_fn(outputs, labels) ``` #### 二、AdamW优化器参数配置 AdamW是带权重衰减修正的Adam变体,参数配置需注意: ```python from torch import optim optimizer = optim.AdamW( params=model.parameters(), lr=1e-3, # 基础学习率 betas=(0.9, 0.999), # 动量参数 eps=1e-8, # 数值稳定系数 weight_decay=0.01, # 权重衰减系数 amsgrad=False # 是否使用AMSGrad变体 ) ``` #### 三、联合配置示例 ```python # 模型定义 class Classifier(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(768, 10) def forward(self, x): return self.fc(x) model = Classifier() # 损失函数优化器组合 criterion = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 1.5])) optimizer = optim.AdamW( [{'params': model.fc.parameters(), 'lr': 1e-4}], # 分层学习率设置[^1] weight_decay=0.01 ) # 训练步骤演示 for batch in dataloader: optimizer.zero_grad() outputs = model(batch['inputs']) loss = criterion(outputs, batch['labels']) loss.backward() optimizer.step() ``` #### 四、关键参数说明表 | 组件 | 参数 | 典型值 | 作用 | |------|------|--------|------| | CrossEntropyLoss | weight | Tensor | 调节类别不平衡 | | | ignore_index | int | 跳过指定类别计算 | | AdamW | lr | 1e-3~1e-5 | 控制参数更新步长 | | | weight_decay | 0.01 | 正则化强度 | | | betas | (0.9,0.999) | 动量控制 | #### 五、实践注意事项 1. **学习率调度**:配合`lr_scheduler`实现动态调整 ```python scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) ``` 2. **梯度裁剪**:防止梯度爆炸 ```python torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) ``` 3. **混合精度训练**:提升计算效率 ```python scaler = torch.cuda.amp.GradScaler() with torch.cuda.amp.autocast(): outputs = model(inputs) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` [^1]: 引用[1]展示了分层参数配置的实现方法 [^4]: 引用[4]验证了优化器训练循环的集成方式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值