为什么深度学习中一般使用mean=[0.485, 0.456, 0.406]和std=[0.229, 0.224, 0.225]来归一化图像?

Q:图像预处理部分在resize后还会使用均值:image_mean=[0.485,0.456,0.406],标准差:image_std=[0.229,0.224,0.225]进行归一化,为什么使用这几个值?

A:image_mean=[0.485,0.456,0.406]、image_std=[0.229,0.224,0.225]是Imagenet数据集的均值和标准差,使用Imagenet的均值和标准是一种常见的做法。如果你想在你自己的数据集上从头开始训练,你可以计算新的平均值和标准。否则,建议使用Imagenet预试模型自己的平均值和标准。

是否使用ImageNet的均值和标准差取决于你的数据:

  • 假设你的数据是“自然场景”的普通照片(人,建筑,动物,不同的照明/角度/背景等等),并且假设你的数据集和 ImageNet 存在类似的偏差(在类别平衡方面),那么使用 ImageNet 的场景统计数据进行规范化就可以了。
  • 如果照片是“特殊的”(颜色过滤,对比度调整,不寻常的光线,等等)或“非自然的主题”(医学图像,卫星地图,手绘等) ,我建议在模型训练之前正确地规范化你的数据集(计算新的平均值和标准)。

来源:Why Pytorch officially use mean=[0.485, 0.456, 0.406] and std=[0.229, 0.224, 0.225] to normalize images?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值