[容易] 递归的应用:改进的汉诺塔

题目描述

约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。现在我们改变游戏的玩法,不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到下盘的上面。Daisy已经做过原来的汉诺塔问题和汉诺塔II,但碰到这个问题时,她想了很久都不能解决,现在请你帮助她。现在有N个圆盘,她至少多少次移动才能把这些圆盘从最左边移到最右边?

输入:

包含多组数据,每次输入一个N值(1<=N=35)。

输出:

对于每组数据,输出移动最小的次数。

样例输入:
1
3
12
样例输出:
2
26
531440
思路:
其实递归问题重在思路,以下内容摘自《2013年王道论坛计算机考研机试指南》:
       为了首先将初始时最底下、最大的圆盘移动到第三根柱子上,我们首先需要将其上的 K-1 个圆盘移动到第三根柱子上,而这恰好等价于移动 K-1 个圆盘从第一根柱子到第三根柱子。当这一移动完成以后,第一根柱子仅剩余最大的圆盘,第二根柱子为空,第三根柱子按顺序摆放着 K-1 个圆盘。我们将最大的圆盘移动到此时没有任何圆盘的第二根柱子上,并再次将 K-1 个圆盘从第三根柱子移动到第二根柱子,此时仍然需要移动K-1 个圆盘从第一根柱子到第三根柱子所需的移动次数(第一根柱子和第三根柱子等价),当这一移动完成以后将最大的圆盘移动到第三根柱子上,最后将 K-1个圆盘从第一根柱子移动到第三根柱子上。若移动 K 个圆盘从第一根柱子到第三根柱子需要 F[K]次移动,那么综上所述 F[K]的组成方式为,先移动 K-1 个圆盘到第三根柱子需要 F[K-1]次移动,再将最大的圆盘移动到中间柱子需要 1 次移动,然后将 K-1 个圆盘移动回第一根柱子同样需要 F[K-1]次移动,移动最大的盘子到第三根柱子需要 1 次移动,最后将 K-1 个圆盘也移动到第三根圆盘需要F[K-1]次移动,这样 F[K] = 3 * F[K - 1] + 2。即从第一根柱子移动 K 个圆盘到第三根柱子,需要三次从第一根柱子移动 K-1 个圆盘到第三根柱子,外加三次对最大圆盘的移动。若函数 F(x)返回移动 x 根子所需要的移动次数,那么其递归方式为 3*F(x-1) + 2。
代码:
#include <iostream>

using namespace std;
int step=0;
void move(char x,char y,int n)
{
    if(n>1)
    {
        move('a','c',n-1);
        move('a','b',1);
        move('c','a',n-1);
        move('b','c',1);
        move('a','c',n-1);
    }
    else
    {
        if(abs(x-y)==1)
        {
            cout<<x<<"->"<<y<<"\n";
            ++step;
        }
        else
        {
            cout<<x<<"->b->"<<y<<endl;
            step+=2;
        }
    }
}
long long f(int n)
{
    if(n==1)
        return 2;
    else
        return 3*f(n-1)+2;
}

int main()
{
    int n;
    while(cin>>n)
    {
        long long step=0;
        for(int i=1;i<=n;++i)
        {
            step=3*step+2;
        }
        cout<<step<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值