机器学习之线性回归

机器学习之线性回归

前言

这个文章主要介绍的是多元线性回归用numpy的实现,借鉴了一些大佬的文章。不足之处很多,请多包涵!

线性回归的理解

线性回归:包括一元线性回归和多元线性回归。
一元线性回归:如 y=bx+a 只有一个x和y。
多元线性回归:如 y=b1x+b2x+b3x…+a 有多个x和一个y

一元线性回归即找到一条能最大拟合的直线。这条直线最好能把所有的点都放上去,但这是不可能的,于是就有了loss(误差)。
误差的表示:
loss=|y-(bx+a)| 即 每个点到直线距离最小的那条,把它转化为平方会更简单,然后取平均值。
loss=1/n[|y1-(bx1+a)|+|y2-(bx2+a)|+|y3-(bx3+a)|…+|yi-(bxi+a)|]
然后,通过这个式子求b和a.

最小二乘法

通过求偏导算出关于b和a的式子。
这是结果

梯度下降法

这是在大佬的文章里学到的,很有意思。通过梯度下降法求b和a,通过一步一步的迭代,慢慢的去靠近到那条最优直线。
梯度即上面的两个公式,定义步长,每次找多大,定义迭代值,找多少次。

实现多元线性回归

阅读了大佬的文章后发现矩阵运算能更好的实现多元线性回归。
学了线性代数的对矩阵运算更熟悉,这里对矩阵运算不做过多讲解。

假设 y=b1x1+b2x2+b3x3…bnxn+a 一共n项,用矩阵实现即:
X=[x1,x2,…xn],B=[b0,b1…bn] 那么X*B.T+b=[b1x1+b1x1+…+bnxn+a]

若为n组x 则:
[x00,x01,…x0n]
X=[x11,x12,…x1n]

[x(n-1)1,x(n-1)2,…x(n-1)n]

[b0x00,b0x01,…b0x0n+a]
B=[b1x11,b1x12,…b1x1n+a]

[bnx(n-1)1,bnx(n-1)2,…bnx(n-1)n+a]

python实现

初始化b和a

在这里插入图片描述
data_x即输入的数据。要使b和x能相乘需要b和x的数目相同,即有n个x,就有n个b。假设X=[x0,x1…,xn],则 B=[b0,b1…,bn] x与B的转置相乘后得到:

b0x0+b1x1+…+bnxn 即
在这里插入图片描述

计算loss

在这里插入图片描述
求出b和a

在这里插入图片描述
这里的b和a即是对上面两个偏导的实现。
然后对a和b进行更新:
在这里插入图片描述
代码

在这里插入图片描述
在这里插入图片描述
一元线性回归

关于一元线性回归依旧可以沿用上述方法,将多组x变为一组x即可。
数据取不合适时误差很大。

到此,这篇文章结束,多谢阅读!

【博士论文复现】【阻抗建模、验证扫频法】光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)内容概要:本文档是一份关于“光伏并网逆变器扫频与稳定性分析”的Simulink仿真实现资源,重点复现博士论文中的阻抗建模与扫频法验证过程,涵盖锁相环和电流环等关键控制环节。通过构建详细的逆变器模型,采用小信号扰动方法进行频域扫描,获取系统输出阻抗特性,并结合奈奎斯特稳定判据分析并网系统的稳定性,帮助深入理解光伏发电系统在弱电网条件下的动态行为与失稳机理。; 适合人群:具备电力电子、自动控制理论基础,熟悉Simulink仿真环境,从事新能源发电、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握光伏并网逆变器的阻抗建模方法;②学习基于扫频法的系统稳定性分析流程;③复现高水平学术论文中的关键技术环节,支撑科研项目或学位论文工作;④为实际工程中并网逆变器的稳定性问题提供仿真分析手段。; 阅读建议:建议读者结合相关理论教材与原始论文,逐步运行并调试提供的Simulink模型,重点关注锁相环与电流控制器参数对系统阻抗特性的影响,通过改变电网强度等条件观察系统稳定性变化,深化对阻抗分析法的理解与应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值