莫比乌斯函数

设正整数N按照算数基本定理分解质因数为 N = p 1 c 1 p 2 c 2 ⋯ p m c m N=p_1^{c_1}p_2^{c_2}\cdots p_m^{c_m} N=p1c1p2c2pmcm,定义函数
μ ( N ) = { 0 ∃ i ∈ [ 1 , m ] , c i > 1 1 m ≡ 0 ( mod ⁡ 2 ) , ∀ i ∈ [ 1 , m ] , c i = 1 − 1 m ≡ 1 ( mod ⁡ 2 ) , ∀ i ∈ [ 1 , m ] , c i = 1 \mu(N)=\begin{cases}0 &\exists i\in[1,m],c_i>1 \\1&m\equiv0(\operatorname{mod}2),\forall i\in[1,m],c_i=1\\ -1&m\equiv1(\operatorname{mod} 2),\forall i\in[1,m],c_i=1\end{cases} μ(N)=011i[1,m],ci>1m0(mod2),i[1,m],ci=1m1(mod2),i[1,m],ci=1

μ ( N ) \mu(N) μ(N) M o ¨ b i u s ⁡ \operatorname{M\ddot{o}bius} Mo¨bius函数(莫比乌斯函数)。

通俗地讲,当 N N N包含相等的质因子时, μ ( N ) = 0 \mu(N)=0 μ(N)=0。当 N N N的所有质因子各不相等时,若N有偶数个质因子, μ ( N ) = 1 \mu(N)=1 μ(N)=1,若N有奇数个质因子, μ ( N ) = − 1 \mu(N)=-1 μ(N)=1

欧拉筛可求 μ \mu μ函。

性质:

∑ i ∣ n μ ( i ) = [ n = = 1 ] \sum_{i\mid n }\mu(i)=[n==1] inμ(i)=[n==1]

证明:

μ ( i ) = 0 \mu(i)=0 μ(i)=0的情况忽略

根据算数基本定理, n = p 1 c 1 p 2 c 2 ⋯ p m c m n=p_1^{c_1}p_2^{c_2}\cdots p_m^{c_m} n=p1c1p2c2pmcm

则真正对答案产生贡献的 i ∣ p 1 ∗ p 2 ∗ p 3 ∗ p 4 ∗ ⋯ ∗ p m i\mid p_1*p_2*p_3*p_4*\cdots *p_m ip1p2p3p4pm

那么我们取 p 1 p_1 p1为决定值,则我们可以分成两个集合(一个集合里面有 p 1 p_1 p1,另一个集合里面没有 p 1 p_1 p1),此时我们在其中一个集合中,都可以找出任意一个数,有唯一数在另一个集合中,形成双射。

这两个集合所有元素对应相加的和为0时,即原数不为0.

反之,则为0.

另外一种证明:

我们以 n ≡ 0 ( mod ⁡ 2 ) n\equiv 0 (\operatorname{mod} 2) n0(mod2)为例,

∑ μ ( i ) = 1 \sum\mu(i)=1 μ(i)=1 S 1 = 1 ∗ ( C n 0 + C n 2 + ⋯ + C n n ) S_1=1*(C_{n}^0+C_n^2+\cdots+C_n^n) S1=1(Cn0+Cn2++Cnn)

∑ μ ( i ) = − 1 \sum\mu(i)=-1 μ(i)=1

S 2 = − 1 ∗ ( C n 1 + C n 3 + ⋯ + C n n − 1 ) S_2=-1*(C_n^1+C_n^3+\cdots+C_n^{n-1}) S2=1(Cn1+Cn3++Cnn1)

还记得二项式定理吗?

根据二项式定理,

则有 ( 1 − 1 ) n = S 1 − S 2 = ∑ k = 0 n C n k 1 k ( − 1 ) n − k = 0 (1-1)^n=S_1-S_2=\sum_{k=0}^nC_n^k1^k(-1)^{n-k}=0 (11)n=S1S2=k=0nCnk1k(1)nk=0

得证。

根据上述证明,我们可以得出

∑ i = 1 n ∑ j = 1 m ( gcd ⁡ ( i , j ) = = 1 ) = ∑ i = 1 n ∑ j = 1 m ∑ d ∣ i & d ∣ j μ ( i ) = ∑ i = 1 min ⁡ ( n , m ) μ ( i ) ∗ ⌊ n / i ⌋ ∗ ⌊ m / i ⌋ \large\sum_{i=1}^n\sum_{j=1}^m(\gcd(i,j)==1)=\sum_{i=1}^n\sum_{j=1}^m\sum_{d\mid i \And d\mid j}\mu(i)=\sum_{i=1}^{\min(n,m)}\mu(i)*\left\lfloor\\ n/i\right\rfloor*\left\lfloor\\ m/i\right\rfloor i=1nj=1m(gcd(i,j)==1)=i=1nj=1mdi&djμ(i)=i=1min(n,m)μ(i)n/im/i

用容斥原理,类似证明。

∑ i = 1 n ∑ j = 1 m ∑ d ∣ i & d ∣ j μ ( i ) , ∑ i = 1 min ⁡ ( n , m ) μ ( i ) ∗ ⌊ n / i ⌋ ∗ ⌊ m / i ⌋ \sum_{i=1}^n\sum_{j=1}^m\sum_{d\mid i \And d\mid j}\mu(i),\sum_{i=1}^{\min(n,m)}\mu(i)*\left\lfloor\\ n/i\right\rfloor*\left\lfloor\\ m/i\right\rfloor i=1nj=1mdi&djμ(i),i=1min(n,m)μ(i)n/im/i是等价的,

[ 1 , n ] [1,n] [1,n]中含有 d d d这个约数的有 ⌊ n / d ⌋ \left\lfloor\\ n/d\right\rfloor n/d个数, [ 1 , m ] [1,m] [1,m]中含有d这个约数的有 ⌊ m / d ⌋ \left\lfloor\\ m/d\right\rfloor m/d

根据乘法原理,就有 ∑ i = 1 n ∑ j = 1 m ∑ d ∣ i & d ∣ j 1 = ∑ d = 1 min ⁡ ( n , m ) ⌊ n / i ⌋ ∗ ⌊ m / i ⌋ \sum_{i=1}^n\sum_{j=1}^m\sum_{d\mid i \And d\mid j}1=\sum_{d=1}^{\min(n,m)}\left\lfloor\\ n/i\right\rfloor*\left\lfloor\\ m/i\right\rfloor i=1nj=1mdi&dj1=d=1min(n,m)n/im/i

莫比乌斯反演公式:

F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum\limits_{d\mid n}f(d) F(n)=dnf(d)

f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) f(n)=\sum_{d\mid n}\mu(d)F(\frac{n}{d}) f(n)=dnμ(d)F(dn)

F ( n ) = ∑ n ∣ d f ( d ) F(n)=\sum\limits_{n\mid d}f(d) F(n)=ndf(d)

f ( n ) = ∑ n ∣ d μ ( n d ) F ( d ) f(n)=\sum_{n\mid d}\mu(\frac{n}{d})F(d) f(n)=ndμ(dn)F(d)
证明可以根据容斥原理得来

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值