求两个正整数n和m的最大公因子。接收键盘输入两个正整数,输出其最大公因子。第一行为测试用例个数k,接下来k行,每行两个正整数。输出为k行,每行输出对应的最大公因子。
样例输入:
2
8 12
9 1
样例输出:
4
1
#include <iostream>
using namespace std;
int main(){
void fun(int a,int b);
int k,m,n;
cin>>k; //输入用例个数
while(k--){ //多组用例个数循环
cin>>m>>n;
fun(m,n);
}
return 0;
}
void fun(int a,int b){
int t,yu;
if(a<b){ //将大数存在a中,小数存在b中
t=a;
a=b;
b=t;
}
while(b!=0){ //除数不能为零,一旦为0,跳出循环,输出最大公约数
yu=a%b;
a=b;
b=yu;
}
cout<<a<<endl;
}
Hanoi塔问题
题目描述
设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:
规则1:每次只能移动1个圆盘;
规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;
规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。
输入
输入只包括一个用例,即数n(1<=x<=10),表示塔座a上有一叠共n个圆盘。
输出
每一行输出每一步的操作,格式是“(X)--->(Z)Y”,即从X塔座移到Z塔座,移动的是Y盘子。
样例输入
3
样例输出
(a)--->(b)1
(a)--->(c)2
(b)--->(c)1
(a)--->(b)3
(c)--->(a)1
(c)--->(b)2
(a)--->(b)1
#include <iostream>
using namespace std;
//每个递归函数都必须有一个非递归的定义的初始值,否则递归函数就无法计算
void hanoi(int n,char a,char b,char c){ //n个盘子移到b
//递归条件
if(n>0){
hanoi(n-1,a,c,b); //将n-1个盘子从a移到c
cout<<"("<<a<<")"<<"--->"<<"("<<b<<")"<<n<<endl;
hanoi(n-1,c,b,a); //最后将n-1个盘子从c移到b,借助a
}
}
int main(){
int x;
cin>>x;
//传入x个圆盘
hanoi(x,'a','b','c');
return 0;
}
题目描述
无穷数列1,1,2,3,5,8,13,21,34,55,……,称为Fibonacci数列。要求根据输入的数x,求出大于x的最小Fibonacci数。
输入
输入只包括一个用例,即数x(1<=x<=100000)。
输出
用一行输出大于x的最小Fibonacci数。例如:当x=8时,输出“13”;当x=20时,输出“21”。
样例输入
8
样例输出
13
#include <iostream>
using namespace std;
int main(){
int fibonacci(int x); //函数声明
int x,y; //y用来接收函数int fibonacci(int x)的返回值 c
cin>>x;
y= fibonacci(x);
cout<<y<<endl;
return 0;
}
// 函数传入1个值x与fibonacci数列中的值比较
int fibonacci(int x){
int a=1;
int b=1;
int c=2;
//当c<=x进入循环
while(c<=x){
a=b;
b=c;
c=a+b;
}
return c;
}