JZ15 程序里总是有一个bug...于是就跳过先做的16
题目
实现函数 double Power(double base, int exponent),求base的exponent次方。
注意:
1.保证base和exponent不同时为0。
2.不得使用库函数,同时不需要考虑大数问题
3.有特殊判题,不用考虑小数点后面0的位数。
数据范围:∣base∣≤100 ,∣exponent∣≤100 ,保证最终结果一定满足 ∣val∣≤104
进阶:空间复杂度O(1) ,时间复杂度O(n)
解析
本题首先要解决的问题是负指数次幂该怎么办?
很显然,x的-n次方,就是(1/x)的n次方,因此将其做初步处理后就可以按正指数次幂来运算了。
方法一 暴力循环
本体可采用暴力手段,即循环相乘的方式,不多做解释,代码如下(官方解答):
double Power(double b, int n) {
if (n < 0) { //负指数幂预处理
b = 1 / b;
n = -n;
}
double ret = 1.0;
for (int i=0; i<n; ++i) ret *= b; //暴力循环
return ret;
}
};
接下来说的是目前标准库中所采用的方式。
方法二 快速递归
在指数次幂运算过程中,关键的不是底数,而是指数。我们应当着重关注这exponent个base是如何相乘起来的。除了暴力方式外,还可以采用递归手段。
每一个指数均可写作一个二进制数,二进制数位上为1的,即表示该乘方应被乘入最后的结果,如:6 = 110,=,而和,则再用该公式进行递归解决。即若该位上为1,则将对应的次幂乘入结果,x次方数+1(即乘以自身),指数位运算右移一位。
代码
double Power(double base, int exponent ) {
if(exponent<0){ //负指数幂预处理
base=1/base;
exponent=-exponent;
}
double x=base; //用x来记录底数乘方的变化
double result=1;
while(exponent){ //指数不为0时
if(exponent&1){ //如果位运算中该位为1,则将该次方数乘入结果中
result=result*x;
}
x=x*x; //x次方数+1
exponent>>=1; //指数算术右移1位,查看下一位是否为1
}
return result;
}