pytorch 线性层

代码:

#线性层,用于降维
import torch
import torchvision
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10()

dataloader=DataLoader(dataset,batch_size=64)

for data in dataloader:
    imgs,targets=data
    print(imgs.shape)
    output=torch.reshape(imgs,(1,1,1,-1))
    #将原图(矩阵)设置成batch—size=1,1x1的图像,然后展开,-1代表展开成多大的就多大不规定
    print(output.shape)

输出:

说明展成了196608个1x1的矩阵

降维操作:

#线性层,用于降维
import torch
import torchvision
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10()

dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.linear1=Linear(196608,10)
        #将196608降维成10

    def forward(self,input):
        output=self.linear1(input)
        return output

tudui=Tudui()

for data in dataloader:
    imgs,targets=data
    print(imgs.shape)
    output=torch.flatten(imgs)
    #铺平,将矩阵铺平成1x1的,输出shape为torch.size([196608])
    
    #output=torch.reshape(imgs,(1,1,1,-1))
    #将原图(矩阵)设置成batch—size=1,1x1的图像,然后展开,-1代表展开成多大的就多大不规定
    #输出为torch.size([1,1,1,196608])
    
    print(output.shape)
    output=tudui(output)
    #降维后输出shape为torch.size([10])
    print(output.shape)

输出:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值