poj3259 Wormholes 最短路 spfa 负权环判断

                                         POJ 3259

题目大意:

就是判断给出的图中是否存在一个负权环,如果有的话,那么这个人转了一圈之后时间总和小于零,代穿越到之前了,也就满足了他。。

大致思路:

裸的spfa判负权环,如果有一个点入队的次数大于总结点数,那么就代表存在一个负环

代码:

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
#include<vector>
using namespace std;
#define inf 9999999
int n,m,w,s,e,t;
struct Node
{
    int to;
    int cost;
    Node(int too,int costt)
    {
        to=too;
        cost=costt;
    }
};
vector<Node>V[2505];
int vis[505];
int cnt[505];
int dis[505];
int spfa()
{
    for(int i=0; i<=505; i++)
    {
        vis[i]=0;
        cnt[i]=0;
        dis[i]=inf;
    }
    queue<int>Q;
    Q.push(1);
    cnt[1]++;
    vis[1]=1;
    dis[1]=0;
    while(!Q.empty())
    {
        int top=Q.front();
        Q.pop();
        vis[top]=0;
        for(int i=0; i<V[top].size(); i++)
        {
            if(dis[V[top][i].to]>dis[top]+V[top][i].cost)
            {
                dis[V[top][i].to]=dis[top]+V[top][i].cost;
                if(!vis[V[top][i].to])
                {
                    Q.push(V[top][i].to);
                    vis[V[top][i].to]=1;
                    cnt[V[top][i].to]++;
                    if( cnt[V[top][i].to]>n)//入队次数大于n,代表有负权环
                        return 1;
                }
            }
        }
    }
    return 0;
}
int main()
{
    int f;
    scanf("%d",&f);
    while(f--)
    {
        for(int i=0; i<=2505; i++)V[i].clear();

        scanf("%d%d%d",&n,&m,&w);
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d%d",&s,&e,&t);
            V[s].push_back(Node(e,t));
            V[e].push_back(Node(s,t));
        }
        for(int i=1; i<=w; i++)
        {
            scanf("%d%d%d",&s,&e,&t);
            V[s].push_back(Node(e,-t));
        }
        if(spfa())
        {
            printf("YES\n");
        }
        else
            printf("NO\n");
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值