等差数列——蓝桥杯19年题

题目链接:用户登录https://www.lanqiao.cn/problems/192/learning/?page=2&first_category_id=1&sort=students_count

题目描述

数学老师给小明出了一道等差数列求和的题目。但是粗心的小明忘记了一 部分的数列,只记得其中 N 个整数。

现在给出这 N 个整数,小明想知道包含这 N 个整数的最短的等差数列有几项?

输入描述

输入的第一行包含一个整数 N。

第二行包含 N 个整数 A1,A2,··· ,AN​。(注意 A1​ ∼ AN​ 并不一定是按等差数列中的顺序给出)

 

输出描述

输出一个整数表示答案。

输入输出样例

示例

输入

5
2 6 4 10 20

输出

10

样例说明: 包含 2、6、4、10、20 的最短的等差数列是 2、4、6、8、10、12、14、16、 18、20。

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 256M

 JAVA解法:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;

public class Main {
     public static void main(String[] args) {
            Scanner sc = new Scanner(System.in);
            int num = sc.nextInt();
            int arr[] = new int[num];
            for (int i = 0; i < num; i++) {
                arr[i] = sc.nextInt();
            }
            Arrays.sort(arr);
            int gcd = 0,min=arr[0],max = arr[num-1];
            for (int i=2;i<num;i++){
                gcd = gcd(gcd,arr[i]-arr[i-1]);
            }
            if (gcd == 0) System.out.println(num);
            else System.out.println((max-min)/gcd+1);
        }
        public static int gcd(int a,int b){
             return b!=0?gcd(b,a%b):a;
        }
}

 

C++解法:

#include <iostream>
#include <algorithm> 
using namespace std;
long long a[100001];
int y(int a,int b)//求最大公约数
{
  if(b==0)return a;
    else
  return y(b,a%b);
}
int main()
{
    int n,i;
    cin>>n;
    for(int i=0;i<n;i++)
        cin>>a[i];
    sort(a,a+n);//排序
    int d=a[1]-a[0];
    for(int i=2;i<n;i++)
    {
        d=y(d,a[i]-a[i-1]);
    }
    if(a[n-1]==a[0])cout<<n<<endl;//考虑特殊情况
    else
    cout<<((a[n-1]-a[0])/d)+1<<endl;//等差数列公式
    return 0;
}

python解法:

# 测试数据太弱了,直接算公差最大时的长度就行。。。
n = int(input())
lst = list(map(int,input().split()))
lst.sort()
d = 999  # d表示公差
for i in range(n-1):
    d = min(d, lst[i+1]-lst[i]) # 找能取到的最大公差
  
if d == 0:
  print(len(lst))
else:
  print(int((lst[-1] - lst[0])/d + 1))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值