快速排序(Quick sort),又称划分交换排序(partition-exchange sort),通过一轮取一个元素作为中间值,将要排序的数据分割成两部分,其中一部分的所有数据都比这个中间值都要小,另外一部分的所有数据都比这个中间值要大,然后再次按此方法依次对这两部分数据分别再次进行快速排序,注意在对各部分数据再次快排的期间是递进进行的哦!整个排序过程可以递归进行,以此达到整个数据变成有序序列。
具体步骤为:
- 从数列中挑出一个元素(习惯取第一个),称为"基准"(pivot)或将其作为当前的中间值(mid_value),
- 重新排序数列,所有元素比中间值小的摆放在中间值前面,所有元素比中间值大的摆在中间值的后面(相同的数可以到任一边)。在这个分区结束之后,该中间值(或叫基准)就处于当前这组数据的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于中间值元素的子数列和大于中间值元素的子数列再排序。
- 最优时间复杂度:O(nlogn)
- 最坏时间复杂度:O(n^2)
- 稳定性:不稳定
代码实现:
def quick_sort(alist, start, end):
# 定义递归退出的条件
if start >= end:
return
# 定义这一轮排序时,分别从两端逼近的指针和当前轮次的中间值(基准值)
low = start
high = end
mid_value = alist[start]
# 开始排序咯
while low < high: # 这里千万要注意,如果mid_value取的是左起第一个元素,那么开始递进的时候一定要从另一头high开始第一步递进!!!否则会造成元素丢失
while low < high and alist[high] > mid_value:
high -= 1
alist[low] = alist[high]
while low < high and alist[low] <= mid_value:
low += 1
alist[high] = alist[low]
alist[low] = mid_value # 把这组数据中在排序时被覆盖掉的基准值再赋回去
# 再次步入循环递进的过程
quick_sort(alist, start, low-1)
quick_sort(alist, low+1, end)
测试:
if __name__ == "__main__":
li = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print(li)
quick_sort(li, 0, len(li)-1)
print(li)
运行一下:
[54, 26, 93, 17, 77, 31, 44, 55, 20]
[17, 20, 26, 31, 44, 54, 55, 77, 93]