吴恩达团队2022机器学习课程,来啦

吴恩达佬团队在Coursera开设新的机器学习课程啦!!!

在这里插入图片描述
到了DeepLearning.AI给我发送的邮件,惊喜的发现这门课居然进行了更新。课程地址如下

https://www.coursera.org/specializations/machine-learning-introduction
在这里插入图片描述
上个版本相信是大部分人的引路教程:https://www.bilibili.com/video/BV1LE411h7P4

新版本终于使用Python,此外,网络搭建等使用的是Tensorflow(毕竟和Google***),但相比下如支持向量机等内容被删减;

整个系列共分为三课

  • 第一课:Supervised Machine Learning: Regression and Classification
  • 第二课:Advanced Learning Algorithms和Unsupervised Learning
  • 第三课:Recommenders, Reinforcement Learning
我将课程进行了搬运,标题进行翻译,字幕使用Coursera提供的英文,结合机翻与自己写的字幕脚本,尽力啦;地址如下

https://www.bilibili.com/video/BV1Pa411X76s

关于课程全部资料,创建了一个在线实时网盘文件夹,放在公众号【啥都会一点的研究生】。本节课对应序号【19】,字幕文件等也一并放入,这样就省了好多比如资料链接经常挂掉和上不去Github的麻烦。

在这里插入图片描述

完成了该课程后可以继续吴恩达佬团队深度学习课程:https://www.bilibili.com/video/BV12E411a7Xn

B站主页整理了机器学习/深度学习从0到1教学视频,欢迎关注共同进步!

https://space.bilibili.com/46880349

在这里插入图片描述

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥都生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值