信效度分析

import numpy as np

x=np.array([80,80,85,80,85,90,60,50,70,78,83,81,72,70,95,87,88,82,76,65,68,55,68,91,86,71,73,64,66,76])

y=np.array([80,75,85,80,80,78,77,65,54,56,98,94,86,88,78,70,65,68,92,82,83,65,69,59,74,86,89,90,70,77])

px=np.mean(x)

py=np.mean(y)

sx2=np.var(x)

sy2=np.var(y)

sx=np.std(x)

sy=np.std(y)

print('x平均数%.1f'%px,'y平均数%.1f'%py,'x方差%.1f'%sx2,'y方差%.1f'%sy2,'x标准差%.1f'%sx,'y标准差%.1f'%sy)

pxy=np.corrcoef(x,y)[0,1]

print('x,y的相关系数为%.2f'%pxy)

z=np.array((x-px)/sx)

print('x的z标准分为',z)

c=np.array(100*z+500)

print('x的ceeb得分为',c)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值