用SPSS做信效度分析

SPSS信效度分析

⭐​ 作者简介:热爱数据分析,学习Python、Stata、SPSS等统计语言的小高同学~
🌙 个人主页:小高要坚强的博客
🧦当前专栏:SPSS
🍊本文内容:SPSS信效度分析
🍓作者“三要”格言:要坚强、要努力、要学习

​​​​​请添加图片描述

1.信度检验

对问卷进行Cronbach’s Alpha信度检验。如果此值高于0.8,则说明信度高;如果此值介于0.7-0.8之间,则说明信度较好;如果此值介于0.6~0.7,则说明信度可接受;如果此值小于0.6,说明信度不佳。
下面利用SPSS进行分析,点击分析–标度–可靠性分析选项,选中所要分析的问卷数据或题目。
在这里插入图在这里插入图片描述
片描述
得到结果,我们要看这个有用的结果,当克隆巴赫Alpha系数(也可以看标准化后的)大于0.8时候,说明问卷信度较高。
在这里插入图片描述

2.效度检验

对量表的效度分析采用KMO和Bartlett球检验法进行检验(注意:这只是效度检验的一个方面)。如果此值高于0.8,则说明研究数据非常适合提取信息,效度很好;如果此值介于0.7-0.8之间,则说明研究数据适合提取信息,效度较好;如果此值介于0.6-0.7,则说明研究数据比较适合提取信息,效度一般;如果此值小于0.6,说明数据效度一般。
下面利用SPSS进行分析,点击降维–因子,选中所要分析的指标数据,根据点击描述选项
选择KMO和巴特利特球形检验,点击确定,结果如下:
在这里插入图片描述
我们还可以通过查看旋转后的(最大方差法)因子载荷系数,来看数据指标的归类情况。
在这里插入图片描述
下面解释结果中比较重要的表(总方差解释),这里涉及到因子分析的一些知识:
在这里插入图片描述
该表可以看出一共提取了4个公因子(看是否符合预期,也可以自己选定噢),具体这四个公因子共能够解释或者说提取样本信息73.09%的信息。

如需整体信效度分析写作模板,可以到这里下载哟~
信效度分析模板下载

​​请添加图片描述

学习和掌握SPSS度和效度分析是进行科学研究和统计分析的重要基础。下面将提供一些关于如何快速学习和了解SPSS度和效度分析的方法。 首先,学习SPSS必须掌握其基本操作,包括数据输入和编辑、变量设定等。可以通过学习相关教程或参加培训课程来快速掌握这些操作。 其次,了解分析的概念和方法。分析主要用于评估测量工具的稳定性和一致性。可以通过计算内部一致性系数(如Cronbach's alpha)来评估问卷或量表的度。了解如何在SPSS中计算和解释分析结果,是学习SPSS分析的重要一步。 然后,了解效度分析的概念和方法。效度分析主要用于评估测量工具的有效性和准确性。可以通过计算相关系数、因子分析等方法来评估问卷或量表的效度。了解如何在SPSS中进行效度分析的计算和解释,可以帮助我们对研究工具的效度进行客观评估。 此外,实践SPSS效度分析是提高技能的有效方法。可以通过模拟数据来进行实验和实践。通过反复练习和实践,不断熟悉SPSS的功能和操作,从而更好地理解和运用效度分析的方法。 最后,要持续学习和积极参与学术讨论和交流。可以参加相关学术研讨会或参与在线学习社区,以了解最新的研究方法和应用。在学术交流中,可以与他人分享和讨论SPSS效度分析的经验和问题,相互学习和提高。 总之,快速学会SPSS效度分析需要通过学习基本操作、了解概念和方法、实践实验和积极参与学术交流等途径来提升技能和理解。通过不断积累经验和知识,我们可以更好地掌握和运用SPSS进行效度分析
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小高要坚强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值