曲柄滑块机构运动规律

实验一  曲柄滑块机构的运动规律

 

一、实验目的

本实验主要涉及微积分中对函数特性的研究,通过实验复习函数求导法、Taylor公式和其他有关知识。着重介绍运用建立近似模型并进行数值计算来就、研究函数的方法。

二、实际问题

曲柄滑块机构是一种常用的机械结构,它将曲柄的转动转化为滑块在直线上的往复运动,是压气机、冲床、活塞式水泵等机械的主机构。

记曲柄OQ的长为r,连杆QP的长为l。当曲柄绕固定点O以角速度w旋转时,由连杆带动的、滑块P在水平槽内作往复直线运动。假设初始时刻曲柄的端点Q位于水平线段OP上,曲柄从初始位置起转动的角速度为,而连杆QP与OP的锐夹角为(称为摆角)。在机械设计中要研究滑块的运动规律和摆角的变化规律,确切的说,要研究滑块的位移、速度和加速度关于的函数关系,摆角及其角速度和角加速度关于的函数关系,进而

(1)    求出滑块的行程s(即滑块往复运动时左、右极限位置间的距离);

(2)    求出滑块的最大和最小加速度(绝对值),以了解滑块在水平方向上的作用力;

(3)    求出的最大和最小角加速度(绝对值),以了解连杆的转动惯量对滑块的影响。

在求解上述问题时,我们假定r=100mm,l=3r=300mm,w=240转/min。

三、数学模型

取O点为坐标原点,OP方向为x轴正方向,P在x轴上的坐标为x,那么可用x表示滑块的位移。

利用三角关系,立即得到

 


                                        (1.1)

 


由于              故有                       

 


(1.2)

 

 

 


                                             (1.3)

 

 

于是滑块的速度:

 


                                             (1.4)

 

 

 

进而,可以得到滑块的加速度为:

 

 

 

 

 

 

 


(1.5)

 

同样,基于关系式:

                        (1.6)

 

我们有摆角的表达式:

 

 


                                     (1.7)

 

 

式(1.6)对t求导,

 


                                   

 

可得:

 

 


                                  (1.8)

 

由此再得:

 

 


                                                 

 

 

(1.9)

 

利用(1.6),不难由上两式导出

 

 


                         (1.10)

 


                                 (1.11)

 

至此,我们得到了滑块位移x和连杆摆角运动规律中有关变量依赖的表达式

虽然我们已经得到了有关变量的解析式,但是要求出问题的解并非十分简单。由于滑块加速度和摆角角加速度的函数表达式(1.5)和(1.11)相当复杂,从这两个式子来了解这两个量并不方便,而要用它们进一步求出极值则更加不易。

由于数学模型本身是对实际问题的抽象,从而也必定有某种简化和忽略。即使我们得到了问题的解析形式解,一般说来,它仍然是对实际情况的近似。为了方便起见,对较为复杂的解析模型进行近似处理常常是必要的。事实上,在曲柄连杆结构(以及不少工程问题)的研究中,确实经常使用着这个方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值