实验一 曲柄滑块机构的运动规律
一、实验目的
本实验主要涉及微积分中对函数特性的研究,通过实验复习函数求导法、Taylor公式和其他有关知识。着重介绍运用建立近似模型并进行数值计算来就、研究函数的方法。
二、实际问题
曲柄滑块机构是一种常用的机械结构,它将曲柄的转动转化为滑块在直线上的往复运动,是压气机、冲床、活塞式水泵等机械的主机构。
记曲柄OQ的长为r,连杆QP的长为l。当曲柄绕固定点O以角速度w旋转时,由连杆带动的、滑块P在水平槽内作往复直线运动。假设初始时刻曲柄的端点Q位于水平线段OP上,曲柄从初始位置起转动的角速度为,而连杆QP与OP的锐夹角为(称为摆角)。在机械设计中要研究滑块的运动规律和摆角的变化规律,确切的说,要研究滑块的位移、速度和加速度关于的函数关系,摆角及其角速度和角加速度关于的函数关系,进而
(1) 求出滑块的行程s(即滑块往复运动时左、右极限位置间的距离);
(2) 求出滑块的最大和最小加速度(绝对值),以了解滑块在水平方向上的作用力;
(3) 求出的最大和最小角加速度(绝对值),以了解连杆的转动惯量对滑块的影响。
在求解上述问题时,我们假定r=100mm,l=3r=300mm,w=240转/min。
三、数学模型
取O点为坐标原点,OP方向为x轴正方向,P在x轴上的坐标为x,那么可用x表示滑块的位移。
利用三角关系,立即得到
(1.1)
由于 故有
(1.2)
而
(1.3)
于是滑块的速度:
(1.4)
进而,可以得到滑块的加速度为:
(1.5)
同样,基于关系式:
(1.6)
我们有摆角的表达式:
(1.7)
式(1.6)对t求导,
可得:
(1.8)
由此再得:
(1.9)
利用(1.6),不难由上两式导出
(1.10)
和
(1.11)
至此,我们得到了滑块位移x和连杆摆角运动规律中有关变量依赖的表达式
虽然我们已经得到了有关变量的解析式,但是要求出问题的解并非十分简单。由于滑块加速度和摆角角加速度的函数表达式(1.5)和(1.11)相当复杂,从这两个式子来了解这两个量并不方便,而要用它们进一步求出极值则更加不易。
由于数学模型本身是对实际问题的抽象,从而也必定有某种简化和忽略。即使我们得到了问题的解析形式解,一般说来,它仍然是对实际情况的近似。为了方便起见,对较为复杂的解析模型进行近似处理常常是必要的。事实上,在曲柄连杆结构(以及不少工程问题)的研究中,确实经常使用着这个方法。