【Lucas定理】BZOJ4403[序列统计]题解

题目概述

给定三个正整数 N,L,R ,统计长度在 1 N 之间,元素大小都在 L R 之间的单调不降序列的数量。输出答案对 106+3 取模的结果。

解题报告

先考虑长度为 n 方案数。假设现在选好了 n 个数,那么序列是确定的(相同不算),所以直接插板法就可以了,令 m=RL+1 ,则方案数就是 (m+n1m1)

那么答案就是 ni=1(m+i1m1)

添上一个 (mm) ,由于 (xy)=(x1y1)+(x1y) ,所以可以得到:

(m+n1m1)+(m+n2m1)++(mm1)+(mm)=(m+n1m1)+(m+n2m1)++(m+1m1)+(m+1m)==(m+nm)

即答案为 (m+nm)1 。然后看到了可怕的 109 ……而 106+3 是个素数,直接Lucas定理+乘法逆元。

示例程序

#include<cstdio>
using namespace std;
typedef long long LL;
const int MOD=1000003;

int te,n,L,R,fac[MOD+5],INV[MOD+5];

void Make()
{
    fac[0]=INV[0]=INV[1]=1;for (int i=2;i<MOD;i++) INV[i]=MOD-(LL)(MOD/i)*INV[MOD%i]%MOD;
    for (int i=1;i<MOD;i++) fac[i]=(LL)fac[i-1]*i%MOD,INV[i]=(LL)INV[i-1]*INV[i]%MOD;
}
#define C(x,y) ((x)<(y)?0:((LL)fac[(x)]*INV[(y)]%MOD*INV[(x)-(y)]%MOD))
inline int Locas(int x,int y) {int ans=1;while (y) ans=(LL)ans*C(x%MOD,y%MOD)%MOD,x/=MOD,y/=MOD;return ans;}
int main()
{
    freopen("program.in","r",stdin);
    freopen("program.out","w",stdout);
    for (Make(),scanf("%d",&te);te;te--)
    {
        scanf("%d%d%d",&n,&L,&R);
        printf("%d\n",(Locas(R-L+1+n,n)+MOD-1)%MOD);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值