【虚树+树形DP】BZOJ2286(Sdoi2011)[消耗战]题解

2 篇文章 0 订阅
1 篇文章 0 订阅

题目概述

给出一棵 n 个节点的树(有边权),有 m 个询问,每次询问给出 k 个节点,需要干掉若干条边使得 k 个节点都不与 1 连通,求最小代价。

解题报告

如果只有一组询问,显然是 O(n) 树形DP,但是有多组询问……不过我们注意到 k 不大,所以如果我们能建出一棵新树,这棵新树只和关键点有关,就可以加快速度。这种树就是虚树,接下来我们讲一下构造方法:

为了维持树形不变,所以我们需要把 k 个点两两点之间的LCA也建进虚树中,但是这不是 O(k2) 的吗?yy一下会发现如果我们先把 k 个点按照DFS序排序,然后只要求相邻两点的LCA的就行了,非相邻两点的LCA一定包含在相邻点的LCA中。

得到关键的 2k1 个点之后,我们再按照DFS序排序,然后用栈维护一条链,如果目前加入的点 x 不是栈顶的孙子,就删除栈顶。最后再连接栈顶和 x ,并把 x <script type="math/tex" id="MathJax-Element-14">x</script> 入栈就行了。

十年OI一场空,没开long long见祖宗。

示例程序

#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=250000,maxm=1000000,maxe=maxn*2+maxm,Log=18;

int n,te,K,m,a[maxm+5],dep[maxn+5];LL MIN[maxn+5];
int E,lnk[2][maxn+5],son[maxe+5],nxt[maxe+5],w[maxe+5];
int fa[maxn+5][Log+5],ti,Lt[maxn+5],Rt[maxn+5];
int top,stk[maxm+5];bool vis[maxn+5];

#define Eoln(x) ((x)==10||(x)==13||(x)==EOF)
inline char readc()
{
    static char buf[100000],*l=buf,*r=buf;
    if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
    if (l==r) return EOF;return *l++;
}
inline int readi(int &x)
{
    int tot=0,f=1;char ch=readc(),lst='+';
    while (!isdigit(ch)) {if (ch==EOF) return EOF;lst=ch;ch=readc();}
    if (lst=='-') f=-f;
    while (isdigit(ch)) tot=(tot<<3)+(tot<<1)+ch-48,ch=readc();
    return x=tot*f,Eoln(ch);
}
inline void Add(int x,int y,int z) {son[++E]=y;w[E]=z;nxt[E]=lnk[0][x];lnk[0][x]=E;}
inline void Add(int x,int y) {son[++E]=y;nxt[E]=lnk[1][x];lnk[1][x]=E;}
void Dfs(int x,int pre=0)
{
    Lt[x]=++ti;dep[x]=dep[pre]+1;fa[x][0]=pre;
    for (int i=1;i<=Log;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
    for (int j=lnk[0][x];j;j=nxt[j]) if (son[j]!=pre)
        MIN[son[j]]=min(MIN[x],(LL)w[j]),Dfs(son[j],x);
    Rt[x]=ti;
}
inline int LCA(int x,int y)
{
    if (dep[x]<dep[y]) swap(x,y);
    for (int j=Log;j>=0&&dep[x]>dep[y];j--) if (dep[fa[x][j]]>=dep[y]) x=fa[x][j];
    if (x==y) return x;
    for (int j=Log;j>=0;j--) if (fa[x][j]!=fa[y][j]) x=fa[x][j],y=fa[y][j];
    return fa[x][0];
}
inline bool cmp(int x,int y) {return Lt[x]<Lt[y];}
#define Son(fa,x) (Lt[fa]<=Lt[x]&&Rt[x]<=Rt[fa])
LL DP(int x)
{
    if (vis[x]) return MIN[x];LL ans=0;
    for (int j=lnk[1][x];j;j=nxt[j]) ans+=DP(son[j]);
    return min(ans,MIN[x]);
}
int main()
{
    freopen("program.in","r",stdin);
    freopen("program.out","w",stdout);
    for (int i=(readi(n),1),x,y,z;i<n;i++)
        readi(x),readi(y),readi(z),Add(x,y,z),Add(y,x,z);
    for (MIN[1]=9e18,Dfs(1),readi(te);te;te--)
    {
        readi(K);for (int i=1;i<=K;i++) readi(a[i]),vis[a[i]]=true;
        a[m=++K]=1;sort(a+1,a+1+m,cmp);top=0;
        for (int i=2;i<=K;i++) a[++m]=LCA(a[i-1],a[i]);
        sort(a+1,a+1+m,cmp);m=unique(a+1,a+1+m)-a-1;
        for (int i=1;i<=m;i++)
        {
            while (top&&!Son(stk[top],a[i])) top--;
            if (top) Add(stk[top],a[i]);stk[++top]=a[i];
        }
        printf("%lld\n",DP(1));
        for (int i=1;i<=m;i++) lnk[1][a[i]]=0,vis[a[i]]=false;
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值