2021-10-21

import gym, os
from itertools import count
import paddle
import paddle.nn as nn
import paddle.optimizer as optim
import paddle.nn.functional as F
from paddle.distribution import Categorical

print(paddle.version)
device = paddle.get_device()
env = gym.make(“CartPole-v0”) ### 或者 env = gym.make(“CartPole-v0”).unwrapped 开启无锁定环境训练

state_size = env.observation_space.shape[0]
action_size = env.action_space.n
lr = 0.001

class Actor(nn.Layer):
def init(self, state_size, action_size):
super(Actor, self).init()
self.state_size = state_size
self.action_size = action_size
self.linear1 = nn.Linear(self.state_size, 128)
self.linear2 = nn.Linear(128, 256)
self.linear3 = nn.Linear(256, self.action_size)

def forward(self, state):
    output = F.relu(self.linear1(state))
    output = F.relu(self.linear2(output))
    output = self.linear3(output)
    distribution = Categorical(F.softmax(output, axis=-1))
    return distribution

class Critic(nn.Layer):
def init(self, state_size, action_size):
super(Critic, self).init()
self.state_size = state_size
self.action_size = action_size
self.linear1 = nn.Linear(self.state_size, 128)
self.linear2 = nn.Linear(128, 256)
self.linear3 = nn.Linear(256, 1)

def forward(self, state):
    output = F.relu(self.linear1(state))
    output = F.relu(self.linear2(output))
    value = self.linear3(output)
    return value

def compute_returns(next_value, rewards, masks, gamma=0.99):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + gamma * R * masks[step]
returns.insert(0, R)
return returns

def trainIters(actor, critic, n_iters):
optimizerA = optim.Adam(lr, parameters=actor.parameters())
optimizerC = optim.Adam(lr, parameters=critic.parameters())
for iter in range(n_iters):
state = env.reset()
log_probs = []
values = []
rewards = []
masks = []
entropy = 0
env.reset()

    for i in count():
        # env.render()
        state = paddle.to_tensor(state,dtype="float32",place=device)
        dist, value = actor(state), critic(state)

        action = dist.sample([1])
        next_state, reward, done, _ = env.step(action.cpu().squeeze(0).numpy())

        log_prob = dist.log_prob(action);
        # entropy += dist.entropy().mean()

        log_probs.append(log_prob)
        values.append(value)
        rewards.append(paddle.to_tensor([reward], dtype="float32", place=device))
        masks.append(paddle.to_tensor([1-done], dtype="float32", place=device))

        state = next_state

        if done:
            if iter % 10 == 0:
                print('Iteration: {}, Score: {}'.format(iter, i))
            break


    next_state = paddle.to_tensor(next_state, dtype="float32", place=device)
    next_value = critic(next_state)
    returns = compute_returns(next_value, rewards, masks)

    log_probs = paddle.concat(log_probs)
    returns = paddle.concat(returns).detach()
    values = paddle.concat(values)

    advantage = returns - values

    actor_loss = -(log_probs * advantage.detach()).mean()
    critic_loss = advantage.pow(2).mean()

    optimizerA.clear_grad()
    optimizerC.clear_grad()
    actor_loss.backward()
    critic_loss.backward()
    optimizerA.step()
    optimizerC.step()
paddle.save(actor.state_dict(), 'model/actor.pdparams')
paddle.save(critic.state_dict(), 'model/critic.pdparams')
env.close()

if name == ‘main’:
if os.path.exists(‘model/actor.pdparams’):
actor = Actor(state_size, action_size)
model_state_dict = paddle.load(‘model/actor.pdparams’)
actor.set_state_dict(model_state_dict )
print(‘Actor Model loaded’)
else:
actor = Actor(state_size, action_size)
if os.path.exists(‘model/critic.pdparams’):
critic = Critic(state_size, action_size)
model_state_dict = paddle.load(‘model/critic.pdparams’)
critic.set_state_dict(model_state_dict )
print(‘Critic Model loaded’)
else:
critic = Critic(state_size, action_size)
trainIters(actor, critic, n_iters=201)

2.1.3
Iteration: 0, Score: 16
Iteration: 10, Score: 34
Iteration: 20, Score: 50
Iteration: 30, Score: 33
Iteration: 40, Score: 59
Iteration: 50, Score: 22
Iteration: 60, Score: 92
Iteration: 70, Score: 122
Iteration: 80, Score: 71
Iteration: 90, Score: 64
Iteration: 100, Score: 74
Iteration: 110, Score: 130
Iteration: 120, Score: 105
Iteration: 130, Score: 199
Iteration: 140, Score: 199
Iteration: 150, Score: 199
Iteration: 160, Score: 199
Iteration: 170, Score: 199
Iteration: 180, Score: 199
Iteration: 190, Score: 199
Iteration: 200, Score: 199

Process finished with exit code 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值