深度学习
文章平均质量分 94
雁回晴空
莫听穿林打叶声,何妨吟啸且徐行。竹杖芒鞋轻胜马,谁怕?一蓑烟雨任平生。
展开
-
解决Win10环境下TensorBoard不能正常显示的问题
问题描述 最近使用PyTorch训练神经网络,想要可视化一下训练中的loss曲线。使用的电脑是Windows10系统,浏览器为谷歌Chrome浏览器。安装好tensorboard包后按照官网教程来敲代码,然后执行。结果却发现谷歌浏览器只有窗口顶部标题栏显示“TensorBoard”,但是窗口中却没有内容。截图如下: 解决方案探索 ...原创 2020-03-16 12:42:13 · 2281 阅读 · 1 评论 -
基于PyTorch的深度学习入门教程(一)——PyTorch安装和配置
前言深度神经网络是一种目前被广泛使用的工具,可以用于图像识别、分类,物体检测,机器翻译等等。深度学习(DeepLearning)是一种学习神经网络各种参数的方法。因此,我们将要介绍的深度学习,指的是构建神经网络结构,并且运用各种深度学习算法训练网络参数,进而解决各种任务。本文从PyTorch环境配置开始。PyTorch是一种Python接口的深度学习框架,使用灵活,学习方便。...原创 2017-11-30 12:01:42 · 244266 阅读 · 34 评论 -
基于PyTorch的深度学习入门教程(七)——PyTorch重点综合实践
前言 PyTorch提供了两个主要特性: (1) 一个n维的Tensor,与numpy相似但是支持GPU运算。 (2) 搭建和训练神经网络的自动微分功能。 我们将会使用一个全连接的ReLU网络作为实例。该网络有一个隐含层,使用梯度下降来训练,目标是最小化网络输出和真实输出之间的欧氏距离。目录Tensors(张量) Warm-up:numpyPyTorch:TensorsAutogra原创 2017-12-14 04:51:51 · 9451 阅读 · 3 评论 -
基于PyTorch的深度学习入门教程(八)——图像风格迁移
前言 本文介绍怎样执行Neural-Style算法。Neural-Style或者叫做Neural-Transfer,将一个内容图像和一个风格图像作为输入,返回一个按照所选择的风格图像加工的内容图像。 原理是非常简单的:我们定义两个距离,一个用于内容(Dc),另一个用于(Ds)。Dc测量两个图像的内容有多像,Ds测量两个图像的风格有多像。然后我们采用一个新图像(例如一个噪声图像),对它进行变化,同原创 2017-12-20 09:26:41 · 10600 阅读 · 14 评论 -
基于PyTorch的深度学习入门教程(二)——简单知识
前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part1的内容。Part1:PyTorch简单知识PyTorch是一个基于Python原创 2017-12-11 06:35:21 · 18842 阅读 · 1 评论 -
基于PyTorch的深度学习入门教程(六)——数据并行化
前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part5的内容。 Part5:数据并行化本文中,将会讲到DataParallel使用多原创 2017-12-11 07:30:22 · 11904 阅读 · 6 评论 -
基于PyTorch的深度学习入门教程(五)——训练神经网络分类器
前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part4的内容。 Part4:训练一个神经网络分类器前面已经介绍了定义神经网络,计算损原创 2017-12-11 07:22:47 · 17947 阅读 · 6 评论 -
基于PyTorch的深度学习入门教程(三)——自动梯度
前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part2的内容。 Part2:PyTorch的自动梯度计算 autograd pack原创 2017-12-11 06:50:46 · 10582 阅读 · 1 评论 -
基于PyTorch的深度学习入门教程(四)——构建神经网络
前言本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。Part1:PyTorch简单知识Part2:PyTorch的自动梯度计算Part3:使用PyTorch构建一个神经网络Part4:训练一个神经网络分类器Part5:数据并行化本文是关于Part3的内容。 Part3:使用PyTorch构建一个神经网络神经网络可以使用tou原创 2017-12-11 06:57:40 · 26907 阅读 · 3 评论 -
Windows环境下使用 Caffe在ImageNet上训练网络
在配置好Windows版的Caffe之后,可以使用Windows Caffe训练ImageNet网络,主要有4个步骤:(1)准备图片数据库(2)将图片数据转换为Caffe可以使用的LMDB或者LevelDB类型(3)取数据库均值(4)开始用Caffe.exe训练网络原创 2017-03-16 21:44:54 · 5308 阅读 · 0 评论 -
Windows10上使用Caffe的Python接口进行图像分类例程
本文将会介绍Caffe的Python接口的使用方法。编辑Python可以使用很多种方法,我们采用的是IPython交互式编辑环境。 1 Python的安装如果你的Windows电脑还没有安装Python,请先自行搜索Python的安装方法,例如 http://jupyter.org/install.html,推荐使用Anaconda软件包安装方式,这样就自带IPython/Jupyte原创 2017-04-09 20:16:30 · 2362 阅读 · 3 评论 -
Python & Numpy 教程(上)
原文网址:http://cs231n.github.io/python-numpy-tutorial/该教程来自于 Justin Johnson我们将会使用Python编程语言来完成本课程(斯坦福大学cs231n)的所有作业。Python是一个伟大的通用编程语言,在一些流行库(numpy,scipy,matplotlib)的帮助下,它可以提供一个科学计算的强大环境。我们希望你们之中的大翻译 2017-03-28 20:27:05 · 3442 阅读 · 1 评论 -
Python & Numpy 教程(下)
NumpyNumpy是Python科学计算的核心库。它提供了高性能多维数组对象,以及使用这些数组的工具。如果你已经熟悉MATLAB,你可以找到这个教程来开始使用Numpy。Arrays一个numpy的数组(array)是一个由相同类型数值构成的网络(grid),并且被非负整数的元组索引。维数是数组的rank;而数组的shape是一个整数元组,它给出了数组每一维度的大小。我们可以使用翻译 2017-03-28 21:02:20 · 5098 阅读 · 0 评论 -
最新的Windows Caffe配置方法(Python接口)
首先,重新隆重介绍Windows Caffe的下载地址:https://github.com/BVLC/caffe/tree/windows真是非常感谢大牛们不辞劳苦地维护和更新这些代码,为我们的科研提供了无限可能。有一些预编译好的程序,我们有需要可以直接去官网下载。这里说一下自主配置和编译的过程。1 需要的软件Visual Studio 2013 或者 2015C原创 2017-03-27 15:01:02 · 5247 阅读 · 0 评论 -
Windows 10(64位)配置Caffe运行环境的基本流程
进行深度学习可以使用Caffe,我使用windows配置了一下Caffe运行环境,非常简单。这里把官网的配置过程搬运过来,以备参考。官网地址:https://github.com/BVLC/caffe/tree/windows 配置环境: Windows 10(64位)+ Visual Studio 2013. 1 获取安装文件 首先在官网地址https://github.原创 2016-11-18 12:59:41 · 3153 阅读 · 3 评论 -
Ubuntu14.04 64位配置Caffe 教程(基于CUDA7.5)
深度学习是研究计算机视觉的重要工具,尤其在图像分类与识别等领域有着划时代的意义。现在有很多深度学习框架,Caffe是比较常用的一个。本文讲述了Ubuntu 14.04(64位)系统下配置Caffe的基本步骤,参考了Caffe的官方网站 http://caffe.berkeleyvision.org/。 一、系统环境配置 1.1 首先安装一般会用到的一些依赖项。打开Ubuntu系原创 2016-11-18 12:57:38 · 1386 阅读 · 0 评论